Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biochem Pharmacol ; 215: 115730, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543348

RESUMEN

The E3 ubiquitin ligase RFFL is an apoptotic inhibitor highly expressed in cancers and its knockdown suppresses cancer cell growth and sensitizes to chemotherapy. RFFL also participates in peripheral protein quality control which removes the functional cell surface ΔF508-CFTR channel and reduces the efficacy of pharmaceutical therapy for cystic fibrosis (CF). Although RFFL inhibitors have therapeutic potential for both cancer and CF, they remain undiscovered. Here, a chemical array screening has identified α-tocopherol succinate (αTOS) as an RFFL ligand. NMR analysis revealed that αTOS directly binds to RFFL's substrate-binding region without affecting the E3 enzymatic activity. Consequently, αTOS inhibits the RFFL-substrate interaction, ΔF508-CFTR ubiquitination and elimination from the plasma membrane of epithelial cells, resulting in the increased functional CFTR channel. Among the α-tocopherol (αTOL) analogs we tested, only αTOS inhibited the RFFL-substrate interaction and increased the cell surface ΔF508-CFTR, depending on RFFL expression. Similarly, the unique proapoptotic effect of αTOS was dependent on RFFL expression. Thus, unlike other αTOL analogs, αTOS acts as an RFFL protein-protein interaction inhibitor which may explain its unique biological properties among αTOL analogs. Moreover, αTOS may act as a CFTR stabilizer, a novel class of drugs that extend cell surface ΔF508-CFTR lifetime.


Asunto(s)
Fibrosis Quística , alfa-Tocoferol , Humanos , alfa-Tocoferol/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Antioxidantes/farmacología , Fibrosis Quística/tratamiento farmacológico , Apoptosis
2.
Biosci Biotechnol Biochem ; 87(5): 501-510, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36809780

RESUMEN

TEAD is a transcription factor responsible for the output of the tumor suppressor Hippo pathway. The transcriptional activity of TEAD requires molecular interaction with its transcriptional coactivator, YAP. Aberrant activation of TEAD is deeply involved in tumorigenesis and is associated with poor prognosis, suggesting that inhibitors targeting the YAP-TEAD system are promising as antitumor agents. In this study, we identified NPD689, an analog of the natural product alkaloid emetine, as an inhibitor of the YAP-TEAD interaction. NPD689 suppressed the transcriptional activity of TEAD and reduced the viability of human malignant pleural mesothelioma and non-small cell lung cancer cells but not the viability of normal human mesothelial cells. Our results suggest that NPD689 is not only a new useful chemical tool for elucidating the biological role of the YAP-TEAD system but also has potential as a starting compound for developing a cancer therapeutic agent that targets the YAP-TEAD interaction.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/farmacología , Emetina , Neoplasias Pulmonares/patología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP , Factores de Transcripción de Dominio TEA/metabolismo
3.
Plant Direct ; 6(9): e446, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36172078

RESUMEN

In Arabidopsis thaliana, the Sigma factor B regulator RsbQ-like family of α/ß hydrolases contains the strigolactone (SL) receptor DWARF14 (AtD14), the karrikin receptor KARRIKIN INSENSITIVE2 (AtKAI2), and DWARF14-LIKE2 (AtDLK2), a protein of unknown function. Despite very similar protein folds, AtD14 and AtKAI2 differ in size and architecture of their ligand binding pockets, influencing their substrate specificity. We present the 1.5 Å crystal structure of AtDLK2, revealing the smallest ligand binding pocket in the protein family, bordered by two unique glycine residues. We identified a gatekeeper residue in the protein's lid domain and present a pyrrolo-quinoline-dione compound that inhibits AtDLK2's enzymatic activity.

4.
Genes Cells ; 27(10): 602-612, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36054428

RESUMEN

Bladder cancer (BlC) is the fourth most common cancer in males worldwide, but few systemic chemotherapy options for its effective treatment exist. The development of new molecularly-targeted agents against BlC is therefore an urgent issue. The Hippo signaling pathway, with its upstream LATS kinases and downstream transcriptional co-activators YAP1 and TAZ, plays a pivotal role in diverse cell functions, including cell proliferation. Recent studies have shown that overexpression of YAP1 occurs in advanced BlCs and is associated with poor patient prognosis. Accessing data from our previous screening of a chemical library of compounds targeting the Hippo pathway, we identified DMPCA (N-(3,4-dimethoxyphenethyl)-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine) as an agent able to induce the phosphorylation of LATS1 and YAP1/TAZ in BlC cells, thereby suppressing their viability both in vitro and in mouse xenografts. Our data indicate that DMPCA has a potent anti-tumor effect, and raise the possibility that this agent may represent a new and effective therapeutic option for BlC.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Animales , Humanos , Masculino , Ratones , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminas , Carbazoles , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteínas Señalizadoras YAP
5.
ACS Med Chem Lett ; 13(4): 687-694, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35450365

RESUMEN

Krüppel-like factor 5 (KLF5) is a potential target for anticancer drugs. However, as an intrinsically disordered protein (IDP) whose tertiary structure cannot be solved, innovative strategies are needed. We focused on its hydrophobic α-helix structure, defined as an induced helical motif (IHM), which is a possible interface for protein-protein interaction. Using mathematical analyses predicting the α-helix's structure and hydrophobicity, a 4-amino-acid site (V-A-I-F) was identified as an IHM. Low-molecular-weight compounds that mimic the main chain conformation of the α-helix with the four side chains of V-A-I-F were synthesized using bicyclic pyrazinooxadiazine-4,7-dione. These compounds selectively suppressed the proliferation and survival of cancer cells but not noncancer cells and decreased the protein but not mRNA levels of KLF5 in addition to reducing proteins of Wnt signaling. The compounds further suppressed transplanted colorectal cancer cells in vivo without side effects. Our approach appears promising for developing drugs against key IDPs.

6.
J Agric Food Chem ; 70(10): 3109-3116, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35234040

RESUMEN

Melanin is a secondary metabolite required for the infection of the rice blast fungus Pyricularia oryzae. Melanin biosynthesis enzymes are targets for controlling rice blast disease, and three types of commercial melanin biosynthesis inhibitors (MBIs) including MBI-R, MBI-D, and MBI-P have been developed. However, the occurrence of MBI-D-resistant strains containing scytalone dehydratase (SDH1/RSY1) with V75M mutations has been recently reported. In this study, we aimed to identify inhibitors of SDH1-V75M. We screened the RIKEN Natural Products Depository chemical library using chemical array technology and evaluated the inhibition of SDH1-V75M by candidate compounds. NPD13731 strongly inhibited the activity of wild-type and mutant SDH1. The structure-activity relationship data were used to create a more potent inhibitor 16, which controlled rice blast disease in rice plants infected with MBI-D-resistant P. oryzae. Compound 16, which we named melabiostin, may be used to develop fungicides for controlling rice blast infections.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Hidroliasas/metabolismo , Melaninas , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
7.
ACS Chem Biol ; 17(2): 483-491, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35128925

RESUMEN

Glutathione peroxidase 4 (GPX4) is an intracellular enzyme that oxidizes glutathione while reducing lipid peroxides and is a promising target for cancer therapy. To date, several GPX4 inhibitors have been reported to exhibit cytotoxicity against cancer cells. However, some cancer cells are less sensitive to the known GPX4 inhibitors. This study aimed to explore compounds showing synergistic effects with GPX4 inhibitors. We screened a chemical library and identified a compound named NPD4928, whose cytotoxicity was enhanced in the presence of a GPX4 inhibitor. Furthermore, we identified ferroptosis suppressor protein 1 as its target protein. The results indicate that NPD4928 enhanced the sensitivity of various cancer cells to GPX4 inhibitors, suggesting that the combination might have therapeutic potential via the induction of ferroptosis.


Asunto(s)
Ferroptosis , Glutatión/metabolismo , Oxidación-Reducción , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Bibliotecas de Moléculas Pequeñas/farmacología
8.
iScience ; 24(12): 103497, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34934919

RESUMEN

The disruption of the tumor microenvironment (TME) is a promising anti-cancer strategy, but its effective targeting for solid tumors remains unknown. Here, we investigated the anti-cancer activity of the mitochondrial complex I inhibitor intervenolin (ITV), which modulates the TME independent of energy depletion. By modulating lactate metabolism, ITV induced the concomitant acidification of the intra- and extracellular environment, which synergistically suppressed S6K1 activity in cancer cells through protein phosphatase-2A-mediated dephosphorylation via G-protein-coupled receptor(s). Other complex I inhibitors including metformin and rotenone were also found to exert the same effect through an energy depletion-independent manner as ITV. In mouse and patient-derived xenograft models, ITV was found to suppress tumor growth and its mode of action was further confirmed. The TME is usually acidic owing to glycolytic cancer cell metabolism, and this condition is more susceptible to complex I inhibitors. Thus, we have demonstrated a potential treatment strategy for solid tumors.

9.
Sci Rep ; 11(1): 21109, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702872

RESUMEN

Cesium (Cs) is found at low levels in nature but does not confer any known benefit to plants. Cs and K compete in cells due to the chemical similarity of Cs to potassium (K), and can induce K deficiency in cells. In previous studies, we identified chemicals that increase Cs tolerance in plants. Among them, a small chemical compound (C17H19F3N2O2), named CsToAcE1, was confirmed to enhance Cs tolerance while increasing Cs accumulation in plants. Treatment of plants with CsToAcE1 resulted in greater Cs and K accumulation and also alleviated Cs-induced growth retardation in Arabidopsis. In the present study, potential target proteins of CsToAcE1 were isolated from Arabidopsis to determine the mechanism by which CsToAcE1 alleviates Cs stress, while enhancing Cs accumulation. Our analysis identified one of the interacting target proteins of CsToAcE1 to be BETA-GLUCOSIDASE 23 (AtßGLU23). Interestingly, Arabidopsis atßglu23 mutants exhibited enhanced tolerance to Cs stress but did not respond to the application of CsToAcE1. Notably, application of CsToAcE1 resulted in a reduction of Cs-induced AtßGLU23 expression in wild-type plants, while this was not observed in a high affinity transporter mutant, athak5. Our data indicate that AtßGLU23 regulates plant response to Cs stress and that CsToAcE1 enhances Cs tolerance by repressing AtßGLU23. In addition, AtHAK5 also appears to be involved in this response.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/enzimología , Cesio , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , beta-Glucosidasa/antagonistas & inhibidores , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cesio/metabolismo , Cesio/farmacología , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
10.
Commun Biol ; 4(1): 1165, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34621018

RESUMEN

Hypoxia-inducible factor-1 (HIF-1) plays essential roles in human diseases, though its central role in oxygen homoeostasis hinders the development of direct HIF-1-targeted pharmacological approaches. Here, we surveyed small-molecule compounds that efficiently inhibit the transcriptional activity of HIF-1 without affecting body homoeostasis. We focused on Mint3, which activates HIF-1 transcriptional activity in limited types of cells, such as cancer cells and macrophages, by suppressing the factor inhibiting HIF-1 (FIH-1). We identified naphthofluorescein, which inhibited the Mint3-FIH-1 interaction in vitro and suppressed Mint3-dependent HIF-1 activity and glycolysis in cancer cells and macrophages without evidence of cytotoxicity in vitro. In vivo naphthofluorescein administration suppressed tumour growth and metastasis without adverse effects, similar to the genetic depletion of Mint3. Naphthofluorescein attenuated inflammatory cytokine production and endotoxic shock in mice. Thus, Mint3 inhibitors may present a new targeted therapeutic option for cancer and inflammatory diseases by avoiding severe adverse effects.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Carcinogénesis/efectos de los fármacos , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Choque Séptico/tratamiento farmacológico , Línea Celular Tumoral , Fluoresceínas/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
11.
ACS Chem Biol ; 16(8): 1566-1575, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34379974

RESUMEN

The phytohormone abscisic acid (ABA) plays an important role in plant stress response, mainly against desiccation. Hence, ABA receptor agonists may function as agents to enhance drought tolerance in crops. ABA exhibits diverse functions that impact plant development and are regulated by various ABA receptor subfamilies. Indeed, we previously reported that 3'-alkyl ABAs exhibit diverse receptor specificities and that 3'-butyl ABA induced a drought stress response without eliciting growth inhibitory effects in Arabidopsis seedlings. Thus, to further investigate plant responses induced by 3'-butyl ABA, as well as the receptors that control the opposing stress and growth responses, we designed new 3'-alkyl ABA derivatives. In addition to the 3'-alkyl chain, a cyclopropyl group was attached to position 3 of ABA to occupy the C6 cleft in the ABA-binding pocket of the receptors, which served to increase the binding affinity and specificity to a certain receptor set. Additionally, the inhibitory activity of pyrabactin resistance 1 (PYR1) and PYR1-like (PYL1) proteins against type 2C protein phosphatase increased following incorporation of the 3-cyclopropyl group in all tested 3'-alkyl ABAs. Interestingly, 3'-butyl ABA induced the highest tolerance against drought stress, compared with 3-cyclopropyl derivatives. To investigate the molecular mechanism underlying the effects elicited by different chemical treatments, those of ABA derivatives on stomatal closure, growth, and gene expression were studied. Evaluation of the receptors activated by ABA derivatives and the plant responses revealed the induction of PYR1, PYL1, PYL2, and PYL5, mediated stomatal closure, and regulated transcription, consequently leading to drought tolerance in plants.


Asunto(s)
Ácido Abscísico/análogos & derivados , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Estomas de Plantas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
12.
Cancer Sci ; 112(10): 4303-4316, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289205

RESUMEN

Yes-associated protein 1 (YAP1) and its paralogue PDZ-binding motif (TAZ) play pivotal roles in cell proliferation, migration, and invasion, and abnormal activation of these TEAD transcriptional coactivators is found in diverse cancers in humans and mice. Targeting YAP1/TAZ signaling is thus a promising therapeutic avenue but, to date, few selective YAP1/TAZ inhibitors have been effective against cancer cells either in vitro or in vivo. We screened chemical libraries for potent YAP1/TAZ inhibitors using a highly sensitive luciferase reporter system to monitor YAP1/TAZ-TEAD transcriptional activity in cells. Among 29 049 low-molecular-weight compounds screened, we obtained nine hits, and the four of these that were the most effective shared a core structure with the natural product alantolactone (ALT). We also tested 16 other structural derivatives of ALT and found that natural ALT was the most efficient at increasing ROS-induced LATS kinase activities and thus YAP1/TAZ phosphorylation. Phosphorylated YAP1/TAZ proteins were subject to nuclear exclusion and proteosomic degradation such that the growth of ALT-treated tumor cells was inhibited both in vitro and in vivo. Our data show for the first time that ALT can be used to target the ROS-YAP pathway driving tumor cell growth and so could be a potent anticancer drug.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Lactonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos de Eudesmano/farmacología , Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Auranofina/farmacología , Movimiento Celular , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células , Proteínas de Unión al ADN/metabolismo , Descubrimiento de Drogas , Femenino , Inula/química , Luciferasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Factores de Transcripción de Dominio TEA , Neoplasias de la Lengua/inducido químicamente , Neoplasias de la Lengua/prevención & control , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Señalizadoras YAP
13.
Cancer Res ; 81(13): 3495-3508, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33975881

RESUMEN

RNA-binding protein PSF functions as an epigenetic modifier by interacting with long noncoding RNAs and the corepressor complex. PSF also promotes RNA splicing events to enhance oncogenic signals. In this study, we conducted an in vitro chemical array screen and identified multiple small molecules that interact with PSF. Several molecules inhibited RNA binding by PSF and decreased prostate cancer cell viability. Among these molecules and its derivatives was a promising molecule, No. 10-3 [7,8-dihydroxy-4-(4-methoxyphenyl)chromen-2-one], that was the most effective at blocking PSF RNA-binding ability and suppressing treatment-resistant prostate and breast cancer cell proliferation. Exposure to No. 10-3 inhibited PSF target gene expression at the mRNA level. Treatment with No. 10-3 reversed epigenetically repressed PSF downstream targets, such as cell-cycle inhibitors, at the transcriptional level. Chromatin immunoprecipitation sequencing in prostate cancer cells revealed that No. 10-3 enhances histone acetylation to induce expression of apoptosis as well as cell-cycle inhibitors. Furthermore, No. 10-3 exhibited antitumor efficacy in a hormone therapy-resistant prostate cancer xenograft mouse model, suppressing treatment-resistant tumor growth. Taken together, this study highlights the feasibility of targeting PSF-mediated epigenetic and RNA-splicing activities for the treatment of aggressive cancers. SIGNIFICANCE: This study identifies small molecules that target PSF-RNA interactions and suppress hormone therapy-refractory cancer growth, suggesting the potential of targeting PSF-mediated gene regulation for cancer treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Epigénesis Genética , Factor de Empalme Asociado a PTB/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Empalme Asociado a PTB/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , ARN Largo no Codificante/genética , Transcripción Genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Biol Chem ; 297(1): 100803, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022224

RESUMEN

The transcriptional coactivator with PDZ-binding motif (TAZ) (WWTR1) induces epithelial-mesenchymal transition and enhances drug resistance in multiple cancers. TAZ has been shown to interact with transcription factors in the nucleus, but when phosphorylated, translocates to the cytoplasm and is degraded through proteasomes. Here, we identified a compound TAZ inhibitor 4 (TI-4) that shifted TAZ localization to the cytoplasm independently of its phosphorylation. We used affinity beads to ascertain a putative target of TI-4, chromosomal segregation 1 like (CSE1L), which is known to be involved in the recycling of importin α and as a biomarker of cancer malignancy. We found that TI-4 suppressed TAZ-mediated transcription in a CSE1L-dependent manner. CSE1L overexpression increased nuclear levels of TAZ, whereas CSE1L silencing delayed its nuclear import. We also found via the in vitro coimmunoprecipitation experiments that TI-4 strengthened the interaction between CSE1L and importin α5 and blocked the binding of importin α5 to TAZ. WWTR1 silencing attenuated CSE1L-promoted colony formation, motility, and invasiveness of human lung cancer and glioblastoma cells. Conversely, CSE1L silencing blocked TAZ-promoted colony formation, motility, and invasiveness in human lung cancer and glioblastoma cells. In human cancer tissues, the expression level of CSE1L was found to correlate with nuclear levels of TAZ. These findings support that CSE1L promotes the nuclear accumulation of TAZ and enhances malignancy in cancer cells.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de Susceptibilidad a Apoptosis Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transactivadores/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Modelos Biológicos , Invasividad Neoplásica , Neoplasias/genética , Fosforilación , Fotoblanqueo , Unión Proteica , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Ensayo de Tumor de Célula Madre , alfa Carioferinas/metabolismo
16.
Heliyon ; 6(10): e05200, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33102840

RESUMEN

Endoplasmic reticulum stress is one of the pathways involved in cell cytotoxicity. In this study, goniothalamin, one of styryllactone compounds found in plant Goniothalamus spp., was observed to trigger ER stress in HeLa cell line. In addition, we demonstrated that peroxisomal multifunctional enzyme type2 (MFE2) was a specific goniothalamin-binding protein using an in vitro goniothalamin-linked bead pull-down assay. Since MFE2 has been reported to be an important mediator enzyme for peroxisomal ß-oxidation of a very long chain fatty acid metabolism, therefore computational molecular docking analysis was performed to confirm the binding of goniothalamin and MFE2. The results indicated that goniothalamin structure binds to scp-2 domain, enoyl-CoA hydratase 2 domain and (3R)-hydroxyacyl-CoA dehydrogenase domain of MFE2. To further determine the effect of MFE2 on ER stress induction, MFE2 knockdown by siRNA in HeLa cell was conducted. The results implied that MFE2 triggered CHOP, a key mediator of ER stress-induced apoptosis, expression. Therefore, these data inferred that goniothalamin may interrupt the MFE2 function resulting in lipid metabolism perturbation associated with ER stress-independent activation of unfolded protein response. This is the first report to show that goniothalamin binds directly to MFE2 triggering ER stress activation probably through the lipid metabolism perturbation.

17.
Biosci Biotechnol Biochem ; 84(12): 2484-2490, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32867616

RESUMEN

Discovery of small-molecule inducers of unique phenotypic changes combined with subsequent target identification often provides new insights into cellular functions. Here, we applied integrated profiling based on cellular morphological and proteomic changes to compound screening. We identified an indane derivative, NPD9055, which is mechanistically distinct from reference compounds with known modes of action. Employing a chemical proteomics approach, we then showed that NPD9055 binds subunits of heterotrimeric G-protein Gi. An in vitro [35S]GTPγS-binding assay revealed that NPD9055 inhibited GDP/GTP exchange on a Gαi subunit induced by a G-protein-coupled receptor agonist, but not on another G-protein from the Gαs family. In intact HeLa cells, NPD9055 induced an increase in intracellular Ca2+ levels and ERK/MAPK phosphorylation, both of which are regulated by Gßγ, following its dissociation from Gαi. Our observations suggest that NPD9055 targets Gαi and thus regulates Gßγ-dependent cellular processes, most likely by causing the dissociation of Gßγ from Gαi.


Asunto(s)
Descubrimiento de Drogas , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fenotipo , Proteómica , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Humanos
18.
Environ Pollut ; 266(Pt 2): 115179, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32717636

RESUMEN

Hydrophobic pollutants are still present in agricultural soil. The Cucurbitaceae family accumulates hydrophobic pollutants through roots, resulting in the contamination of aerial parts. Major latex-like proteins (MLPs), found in the Cucurbitaceae family, play an important role in the contamination by binding to these hydrophobic pollutants. Thus far, efficient cultivation methods for the production of safe crops with lower concentrations of hydrophobic pollutants have not been developed. Herein, we competitively inhibited the binding of MLPs to hydrophobic pollutants, pyrene and dieldrin, in roots by using MLP binding pesticides. By conducting a chemical array screening, we found that MLPs bound compounds with indole- and quinazoline-like structures. Commercially available pesticides amisulbrom and pyrifluquinazon, which possess such structures, successfully inhibited the binding of MLPs to pyrene and dieldrin in vitro. When zucchini plants were cultivated in the contaminated soil with 1.25 mmol/kg pyrene and 12.5 µmol/kg dieldrin, the concentration of pyrene and dieldrin in xylem sap was significantly decreased by 30% and 15%, respectively. Our results demonstrate that the pesticides binding to MLPs competitively inhibited the binding of MLPs to pyrene and dieldrin in roots, resulting in the reduction of overall contamination. This study proposes a novel approach to cultivate safer crops and advances the utilization of unknown functions of pesticides.


Asunto(s)
Cucurbita , Contaminantes Ambientales , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Unión Competitiva , Látex , Raíces de Plantas/química
19.
ACS Chem Biol ; 15(8): 2195-2204, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32584541

RESUMEN

The Wnt signaling pathway regulates diverse cellular processes. ß-Catenin is one of the major components of this pathway, in which it plays a main role. Although it has been established that ß-catenin is mutated in a wide variety of tumors, there are currently no effective therapeutic agents that target ß-catenin. In this study, we searched for the compound that targets mutant ß-catenin and found DS37262926 (miclxin). Miclxin exhibited ß-catenin-dependent apoptosis in ß-catenin-mutated HCT116 cells and isogenic HCT116 (CTNNB1 Δ45/-) cells; however, this effect was not observed in isogenic HCT116 (CTNNB1 +/-) cells. Using miclxin-immobilized beads, MIC60, one of the major components of the mitochondrial contact site and cristae organizing system (MICOS) complex, was identified as a target protein of miclxin. We revealed that MIC60 dysfunction caused by miclxin induced a mitochondrial stress response in a mutant ß-catenin-dependent manner. Activation of the mitochondrial stress response was responsible for the downregulation of Bcl-2, leading to severe loss of mitochondrial membrane potential and subsequent apoptosis-inducing factor-dependent apoptosis. Our findings suggest that targeting MIC60 is a potential strategy with which tumor cells can be killed through induction of severe mitochondrial damage in a mutant ß-catenin-dependent manner.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Estrés Fisiológico , beta Catenina/metabolismo , Células HCT116 , Humanos , Vía de Señalización Wnt
20.
Sci Rep ; 10(1): 8691, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457324

RESUMEN

Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.


Asunto(s)
Arabidopsis/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rotenona/farmacología , Plantones/efectos de los fármacos , Plantones/metabolismo , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA