Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297714

RESUMEN

Micropropagation of fast-growing tree genotypes such as the hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) is increasing. The efficiency of micropropagation depends on the luminaires, hence luminescent electric diodes (LED), which emit light of a narrow spectrum, are gaining popularity. Mostly, different LEDs are combined to increase the photosynthetic efficiency. However, light also acts as an environmental signal, which triggers specific responses in plants, which are genotype specific, and regarding hybrid aspen, are likely affected by heterosis. In this study, morphological and physiological responses of clones of hybrid aspen with contrasting field performance to the spectral composition of illumination were studied in vitro. Among the 15 variables measured, area of leaves and concentration and ratio of chlorophyll a and b explained most of the variance (58.6%), thereby linking a specific combination of traits to productivity. These traits and their responses to light were affected by heterosis, as indicated by the clone-treatment interaction, particularly for the clone's moderate productivity. The top-performing clones were little sensitive to illumination due to efficient photosystems. Nevertheless, illumination with wider spectral composition had generally positive effects on plantlet performance. Accordingly, clone-specific illumination protocols and luminaries capable of it are advantageous for the efficiency of micropropagation of hybrid aspen.

2.
Plants (Basel) ; 11(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35448825

RESUMEN

Micropropagation of forest reproductive material is becoming an increasingly important tool of climate-smart forest management, whose efficiency is depending on artificial illumination, which in turn can have species-specific effects. To improve the energy-efficiency of micropropagation, light emitting diodes (LED) are becoming more popular; however, they emit light of narrow spectral composition, synergic effects of which can alter plantlet development. Regarding the in vitro cultures of trees, such effects have been scarcely studied. In this study, three clones of silver birch (Betula pendula Roth.) and three clones of hybrid aspen (Populus tremuloides Michx. × Populus tremula L.) from the eastern Baltic region were tested. The responses of leaf and stem anatomy of in vitro cultures to three LED light illumination treatments differing by spectral composition and to illumination by fluorescent tubes were estimated by linear (mixed) models. The studied light treatments had non-interacted effects on stomata density and on the secondary xylem cell wall in the stem of silver birch and in the stomata length, stem radius, and phloem width of hybrid aspen. Furthermore, clone-specific responses to illumination were observed for number of chloroplasts and phloem width of silver birch and for leaf thickness and xylem cell wall thickness of hybrid aspen, implying different mechanisms of shade avoidance. In general, the responses of plantlet anatomy differed according to the width of the light spectrum in case of LED, as well as for fluorescent tubes. Considering the legacy effects of early development of plantlets, adaptability of illumination in terms of spectral composition according to the requirements of genotypes appear highly beneficial for micropropagation of sustainable forest reproductive material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...