Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 578, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996685

RESUMEN

Lipid droplets (LDs) are key subcellular organelles for regulating lipid metabolism. Although several subcellular organelles participate in lipid metabolism, it remains elusive whether physical contacts between subcellular organelles and LDs might be involved in lipolysis upon nutritional deprivation. Here, we demonstrate that peroxisomes and peroxisomal protein PEX5 mediate fasting-induced lipolysis by stimulating adipose triglyceride lipase (ATGL) translocation onto LDs. During fasting, physical contacts between peroxisomes and LDs are increased by KIFC3-dependent movement of peroxisomes toward LDs, which facilitates spatial translocations of ATGL onto LDs. In addition, PEX5 could escort ATGL to contact points between peroxisomes and LDs in the presence of fasting cues. Moreover, in adipocyte-specific PEX5-knockout mice, the recruitment of ATGL onto LDs was defective and fasting-induced lipolysis is attenuated. Collectively, these data suggest that physical contacts between peroxisomes and LDs are required for spatiotemporal translocation of ATGL, which is escorted by PEX5 upon fasting, to maintain energy homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ayuno/efectos adversos , Gotas Lipídicas/metabolismo , Lipólisis/fisiología , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis Espacio-Temporal , Células 3T3-L1/metabolismo , Adipocitos/metabolismo , Animales , Caenorhabditis elegans , Señales (Psicología) , Citoesqueleto , Cinesinas/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nutrientes , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/genética , Transducción de Señal
2.
Diabetes ; 68(1): 81-94, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352876

RESUMEN

SREBP1c is a key transcription factor for de novo lipogenesis. Although SREBP1c is expressed in pancreatic islets, its physiological roles in pancreatic ß-cells are largely unknown. In this study, we demonstrate that SREBP1c regulates ß-cell compensation under metabolic stress. SREBP1c expression level was augmented in pancreatic islets from obese and diabetic animals. In pancreatic ß-cells, SREBP1c activation promoted the expression of cell cycle genes and stimulated ß-cell proliferation through its novel target gene, PAX4 Compared with SREBP1c+/+ mice, SREBP1c-/- mice showed glucose intolerance with low insulin levels. Moreover, ß-cells from SREBP1c-/- mice exhibited reduced capacity to proliferate and secrete insulin. Conversely, transplantation of SREBP1c-overexpressing islets restored insulin levels and relieved hyperglycemia in streptozotocin-induced diabetic animals. Collectively, these data suggest that pancreatic SREBP1c is a key player in mediating ß-cell compensatory responses in obesity.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunoprecipitación de Cromatina , Proteínas de Homeodominio/genética , Inmunohistoquímica , Masculino , Ratones , Factores de Transcripción Paired Box/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
3.
Mol Cell Biol ; 39(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397073

RESUMEN

Oxygen is a key molecule for efficient energy production in living organisms. Although aerobic organisms have adaptive processes to survive in low-oxygen environments, it is poorly understood how lipolysis, the first step of energy production from stored lipid metabolites, would be modulated during hypoxia. Here, we demonstrate that fasting-induced lipolysis is downregulated by hypoxia through the hypoxia-inducible factor (HIF) signaling pathway. In Caenorhabditis elegans and mammalian adipocytes, hypoxia suppressed protein kinase A (PKA)-stimulated lipolysis, which is evolutionarily well conserved. During hypoxia, the levels of PKA activity and adipose triglyceride lipase (ATGL) protein were downregulated, resulting in attenuated fasting-induced lipolysis. In worms, HIF stabilization was sufficient to moderate the suppressive effect of hypoxia on lipolysis through ATGL and PKA inhibition. These data suggest that HIF activation under hypoxia plays key roles in the suppression of lipolysis, which might preserve energy resources in both C. elegans and mammalian adipocytes.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Lipasa/metabolismo , Células 3T3 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Lípidos/fisiología , Lipólisis/efectos de los fármacos , Lipólisis/fisiología , Ratones , Nematodos , Fosforilación , Transducción de Señal
4.
J Biol Chem ; 291(39): 20315-28, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27496951

RESUMEN

Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIß via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Metabolismo de los Lípidos/fisiología , Células 3T3-L1 , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Ratones
5.
Mol Cell Biol ; 34(22): 4165-76, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25202121

RESUMEN

Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas Portadoras/metabolismo , Lipasa/metabolismo , Lipólisis , Animales , Caenorhabditis elegans/citología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ayuno , Mucosa Intestinal/metabolismo , Intestinos/citología , Gotas Lipídicas/metabolismo , Transducción de Señal
6.
PLoS One ; 7(11): e49993, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166806

RESUMEN

Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD) or a high-fat diet (HFD). In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.


Asunto(s)
Peso Corporal/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Ritmo Circadiano/genética , Métodos de Alimentación , Regulación de la Expresión Génica/fisiología , Análisis de Varianza , Animales , Colesterol/sangre , Ritmo Circadiano/fisiología , Cartilla de ADN/genética , Dieta Alta en Grasa , Regulación de la Expresión Génica/genética , Hipotálamo/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...