Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405905, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771269

RESUMEN

The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.

2.
J Am Chem Soc ; 146(15): 10917-10924, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587904

RESUMEN

BN/CC isosterism is an effective strategy to build hybrid functional molecules with unique properties. In contrast to the alkynyl iminium salts derived from cyclic (alkyl)(amino)carbenes (CAACs) that feature only one reversible reduction wave, the isoelectronic cationic CAAC-iminoboryl adducts could be singly and doubly reduced smoothly. Both the resultant neutral radical and anionic azaborataallenes bear NBC-mixed allenic structures. The former radical has a high spin-density of 0.55e at CCAAC carbon, yet exhibits formal boron-centered radical reactivity. The latter azaborataallenes feature the nucleophilic CCAAC center and polar N(δ-)═B(δ+)═C(δ-) unit, and readily undergo nucleophilic substitution, isocyanide insertion, dipolar addition and cycloaddition reactions etc. The N-substituents have been shown to have a significant influence on the solid-state structure, thermal stability, and reactivity of azaborataallenes. This work showcases the allenic BN-unsaturated species as versatile building blocks in organic synthesis.

3.
Inorg Chem ; 62(46): 18820-18824, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37935044

RESUMEN

We present the synthesis, structural characterization, and reactivity of alkylideneborane 2, supported by π-donating N-heterocyclic imino and σ-donating N-heterocyclic carbene (NHC) ligands. The incorporation of these ligands effectively weakens the B═C bond strength, leading to enhanced reactivity. Consequently, selective cleavage of the B═C bond can be achieved using pyridine-N-oxide, sulfur, and selenium, resulting in the formation of 1,3-dioxa-2,4-diboretane 3, thioxoborane 4, and selenoborane 5, respectively. Furthermore, intriguing B═C bond insertions with CO2 and CS2 are observed, affording zwitterionic borenium/fluorenide 6 and dithiaboretane 7. The former species 6 is readily converted to transient oxoborane and imidazolium enolate, showcasing the bora-Wittig reaction of alkylideneborane. This investigation highlights the potential of alkylideneborane as a versatile building block for synthesizing novel organoboron compounds through unconventional transformations.

4.
J Am Chem Soc ; 145(34): 18767-18772, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37582249

RESUMEN

Exploration of the metallomimetic chemistry of main group elements is of the utmost importance from the perspective of both fundamental research and potential applications. Here, we report the synthesis, bonding analysis, and reactivities of an isolable diiminoborane, Mes*B≡N─N≡BMes* (Mes* = 2,4,6-tri-tert-butylphenyl) (1), a BN analogue of butadiyne. This species is characterized by a conjugated B≡N─N≡B moiety, a structural feature that enables the controlled release of N2 when it is exposed to organic nitriles. Furthermore, the N2 unit in 1 could be reduced to an ammonium salt via cleavage of the BN triple bond. Our work shows a rare example of an unsaturated BN system, serving as a platform for both the release and reduction of N2. This discovery opens new pathways and holds substantial influence on the future design of functional main group N2 species.

5.
Angew Chem Int Ed Engl ; 62(36): e202308467, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37395499

RESUMEN

This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.

6.
Nanoscale ; 15(3): 1402-1411, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36594359

RESUMEN

In this paper, a three-dimensional (3D) photodetector based on a single wall carbon nanotube (SWCNT) and graphene heterojunction has been fabricated by a self-rolled-up process. In the designed structure, graphene acted as the conductive channel and SWCNTs absorbed the incident light ranging from the visible to near-infrared bands. Compared to planar (two-dimensional, 2D) devices, 3D microcavities provided a natural resonant cavity to enhance the optical field, which improved the photoresponsivity. This 3D heterojunction photodetector realized a broadband photodetection from 470 to 940 nm with an ultrahigh photoresponsivity of 4.9 × 104 A W-1 (@ 590 nm) and 1.9 × 104 A W-1 (@ 940 nm), a fast photoresponse speed of 1.6 ms, and an excellent sensitivity of 2.28 × 1011 Jones. Besides, the fabricated photodetector showed favorable mid-infrared detection with a photoresponsivity of 3.08 A W-1 at 10.6 µm. Moreover, the photodetector exhibited a promising room-temperature imaging capability. The 3D heterojunction photodetector would provide a feasible pathway to realize graphene-based photodetectors with high performance and could be extended to be integrated with other light absorptive materials.

7.
Materials (Basel) ; 15(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36233918

RESUMEN

This paper reports a novel, one-dimensional dense array of asymmetrical metal-oxide-semiconductor field-effect-transistor (MOSFET) THz detector, which has been fabricated in GlobalFoundries 55-nm CMOS technology. Compared with other technologies, the Si-based complementary metal-oxide-semiconductor (CMOS) dominates in industrial applications, owing to its easier integration and lower cost. However, as the frequency increases, the return loss between the antenna and detector will increase. The proposed THz detector has a short-period grating structure formed by MOSFET fingers in the array, which can serve as an effective antenna to couple incident THz radiation into the FET channels. It not only solved the problem of return loss effectively, but also greatly reduced the detector area. Meanwhile, since the THz signal is rectified at both the source and drain electrodes to generate two current signals with equal amplitude but opposite directions, the source drain voltage is not provided to reduce the power consumption. This leads to a poor performance of the THz detector. Therefore, by using an asymmetric structure for the gate fingers position to replace the source drain voltage, the performance of the detector in the case of zero power consumption can be effectively improved. Compared with the symmetrical MOSFET THz detector, Rv is increased by 183.3% and NEP is decreased by 67.7%.

8.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35957107

RESUMEN

0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, the extra-large grains (~10-50 µm) were evolved from the micron-sized filler powders, and the fine grains (~0.05-0.35 µm) were derived from the sol precursor matrix. The 0.9KNbO3-0.1BaTiO3 ceramics exhibit relaxor-like behavior with a diffused phase transition near room temperature, as confirmed by the presence of the polar nanodomain regions revealed through high resolution transmission electron microscope analyses. A large room-temperature electrocaloric effect (ECE) was observed, with an adiabatic temperature drop (ΔT) of 1.5 K, an isothermal entropy change (ΔS) of 2.48 J·kg-1·K-1, and high ECE strengths of |ΔT/ΔE| = 1.50 × 10-6 K·m·V-1 and ΔS/ΔE = 2.48 × 10-6 J·m·kg-1·K-1·V-1 (directly measured at E = 1.0 MV·m-1). These greatly enhanced ECEs demonstrate that our simple IAGG method is highly appreciated for synthesizing high-performance electrocaloric materials for efficient cooling devices.

9.
Angew Chem Int Ed Engl ; 61(34): e202205814, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35713957

RESUMEN

Being isoelectronic with alkynes, iminoboranes with a polar B≡N triple bond have been exclusively investigated as a potent 1,2-dipole in synthetic chemistry. Herein, we disclose the unprecedented reactivity of aryliminoboranes via the BNCC π conjugation, namely hetero-enyne behavior. This allows for facile dearomative Diels-Alder-like reactions of aryliminoboranes with aldehydes. This cycloaddition features mild conditions, is catalyst-free, and has a broad substrate scope and good functional group tolerance. Kinetic and computational studies reveal its second-order reaction and concerted cyclization mechanism. This report unveils new synthetic application of iminoboranes beyond their classical reaction patterns.

10.
Chem Sci ; 13(8): 2303-2309, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310477

RESUMEN

A cationic terminal iminoborane [Mes*N[triple bond, length as m-dash]B ← IPr2Me2][AlBr4] (3+[AlBr4]-) (Mes* = 2,4,6-tri-tert-butylphenyl and IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) has been synthesized and characterized. The employment of an aryl group and N-heterocyclic carbene (NHC) ligand enables 3+[AlBr4]- to exhibit both B-centered Lewis acidity and BN multiple bond reactivities, thus allowing for the construction of tri-coordinate boron cations 5+-12+. More importantly, initial reactions involving coordination, addition, and [2 + 3] cycloadditions have been observed for the cationic iminoborane, demonstrating the potential to build numerous organoboron species via several synthetic routes.

11.
Angew Chem Int Ed Engl ; 61(15): e202117053, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122370

RESUMEN

Although Schleyer's computations in 1979 predicted that the ground state of the parent diborirane features a planar-tetracoordinate carbon atom (anti van't Hoff-Le Bel geometry), this work demonstrates that substitution of C coupled with N-heterocyclic carbene (NHC) coordination provides access to isolable diborirane derivatives 3 and 4 with van't Hoff-Le Bel geometry. Species 3 and 4 are isoelectronic with cyclopropane and the highly strained B2 C rings feature 2c-2e bent σ bonds. Consequently, the B-B and B-C bonds in 3 are cleaved in the presence of hydride, proton, and chalcogens. The former two reactions gave NHC-coordinated fluorenyldihydridoborane 5 and dichlorofluorenylborane 6, respectively, whereas the latter transformations afforded novel thiaborirane 8 and selenaborirane 9. In addition, transfer hydrogenation of 3 with ammonia borane (H3 N⋅BH3 ) led to the formation of (µ-hydrido)diborane 7 via selective cleavage of the B-B bond. These reactivities show potential for their future application in organic synthesis.

12.
J Am Chem Soc ; 143(34): 13483-13488, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427439

RESUMEN

BN/CC isosterism can give rise to attractive molecules with unique physical or chemical properties. We report here the synthesis, characterization, and reactivities of the boraiminolithium species 2, a room-temperature-stable crystalline solid accessible through a facile dehydrohalogenation/deprotonation reaction. This species, bearing a polarized B≡N triple bond and an anionic N center, is the first example of a BN analogue to the well-known alkynyllithium molecules (lithium acetylides). It has demonstrated a remarkable ability for iminoborane-transfer reactions, which allows for the isolation of a series of unprecedented N-functionalized iminoboranes as well as novel main-group heterocycles. Stable boraiminolithium reagents may become powerful tools in the exploration of new BN-containing building blocks for synthetic chemistry and materials science.

13.
Nanotechnology ; 32(38)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34116524

RESUMEN

In this work, we prepared NiCo alloy/C with rhombic dodecahedron structure and superior microwave absorption performance by using ZIF-67 as the raw material. The rhombic dodecahedron NiCo alloy/C was with rough particles on the surface was photographed by field emission scanning electron microscopy. By adjusting the doping amount of Ni and the temperature of pyrolysis, improved the impedance matching of NiCo alloy/C. Specifically, NiCo alloy/C exhibits a minimum reflection loss of -65.48 dB at 13.48 GHz, while the thickness is 1.63 mm. Defects introduced in the Ni doping process and the special rhombic dodecahedral structure can cause multiple loss mechanisms. Therefore, this NiCo alloy/C composite has the potential to be a potential microwave absorber material with lightweight and high microwave absorption properties.

14.
Inorg Chem ; 60(12): 8432-8436, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34043317

RESUMEN

A facile route to synthesis of B═C double-bonded systems has been developed. Specifically, both dibromofluorenylborane (FluH-BBr2) and a 1,1-dibromo-2,2-difluorenyldiborane/dimethyl sulfide adduct [(FluH)2B-BBr2(SMe2)] could be smoothly dehydrobrominated and subsequently coordinated by N-heterocyclic carbenes (NHCs) with formation of the respective alkylideneborane 1 and diborabutadiene 3. The electronic structures of 1 and 3 are interrogated and compared with those of base-free counterparts through density functional theory calculations.

15.
Chem Commun (Camb) ; 57(10): 1226-1229, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33416813

RESUMEN

A fused tetracyclic BN-species 1 featuring nucleophilic nitrogen and electrophilic boron centers behaves as a reactive N/B frustrated Lewis pair (FLP) for small molecule activation. Specifically, the O-H and C[double bond, length as m-dash]O bonds have been cleaved by 1 with the formation of fused borinic acid 2, borenium species 3, anionic boranuidacarboxylic acid 4 and oxadiazaborolidinone 5, respectively. Quantum-mechanical calculations are conducted to comprehensively understand the activation processes of small molecules by 1.

16.
Methods Mol Biol ; 2186: 63-76, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32918730

RESUMEN

Antibacterial resistance (AR) is causing more and more bacterial infections that cannot be cured by using the antibacterial drugs that are currently available. It is predicted that 10 million people will die every year by 2050 from infections caused by antibacterial resistant strains, surpassing the predicted numbers of deaths caused by cancer. AR is therefore a global challenge and novel antibacterial strategies are in high demand. To this end, the work on exploring the pore properties of a bacterial sugar transporter, WzaK30, has led to the discovery of the first inhibitor against bacterial capsular polysaccharides export.Recently, single-molecule recapitulation of capsular polysaccharide (CPS) export and pore formation properties of Wza barrel peptides have also revealed the possibility of a next-generation of Wza strategies. These strategies are based upon the first examination and understanding of the pore properties of wild-type (WT) and mutant WzaK30 in single-molecule electrical channel recording. The initially reported experimental procedures have been further developed to enable efficient studies of other Wza homologs that are more common in bacterial pathogens causing significant bacterial infections. Therefore, this chapter presents the most recent protocols and logistics behind the research on Wza channel activity, antibacterials, and strategies. The disciplines covered here include computation, molecular biology, biochemistry, electrophysiology, microbiology, and biophysics.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Polisacáridos Bacterianos/metabolismo , Antibacterianos/farmacología , Cápsulas Bacterianas/efectos de los fármacos , Transporte Biológico , Escherichia coli/efectos de los fármacos
17.
Inorg Chem ; 59(8): 5261-5265, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32271015

RESUMEN

The synthesis, characterization, and reactivity of an iminoborane-N-heterocyclic carbene (NHC) adduct were described. The reaction of DmpNHB(OEt)Br [1; Dmp = 2,6-bis(2,4,6-trimethylphenyl)phenyl] with 2 equiv of 1,3-diimethyl-4,5-dimethylimidazol-2-ylidene (IMe4) resulted in the formation of an iminoborane-NHC complex 2. Both X-ray analysis and density functional theory calculations revealed the double-bond character of the B═N bond in 2. Interestingly, compared with the corresponding Lewis-base-free iminoborane, 2 features a nitrogen atom with increased electron density, which could be attributed to coordination of the NHC. Similar to the isoelectronic species imine, this nitrogen center in 2 can be easily attacked by electrophiles. Indeed, the reaction of 2 with trimethylsilyl triflate (Me3SiOTf) afforded an NHC-stabilized borenium cation 3, representing a facile strategy to prepare cationic tricoordinate boron species.

18.
Chem Sci ; 11(27): 7053-7059, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34122998

RESUMEN

The mono-base-stabilized 1,2-diboranylidenehydrazine derivatives featuring a 1,3-dipolar BNN skeleton are obtained by dehydrobromination of [ArB(Br)NH]2 (Ar = 2,6-diphenylphenyl (Dpp), Ar = 2,6-bis(2,4,6-trimethylphenyl)phenyl (Dmp) or Ar = 2,4,6-tri-tert-butylphenyl (Mes*)) with N-heterocyclic carbenes (NHCs). Depending on the Ar substituents, such species can be isolated as a crystalline solid (Ar = Mes*) or generated as reactive intermediates undergoing spontaneous intramolecular aminoboration of the proximal arene rings via [3 + 2] cycloaddition (Ar = Dpp or Dmp). The latter reactions showcase the 1,3-dipolar reactivity toward unactivated arenes at ambient temperature. In addition, double cycloaddition of the isolable BNN species with two CO2 molecules affords a bicyclic species consisting of two fused five-membered BN2CO rings. The electronic structures of these BNN species and the mechanisms of these cascade reactions are interrogated through density functional theory (DFT) calculations.

19.
Inorg Chem ; 58(19): 13370-13375, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31553578

RESUMEN

The reactivity of a bulky m-terphenylboronic acid, DmpB(OH)2 [1; Dmp = 2,6-bis(2,4,6-trimethylphenyl)phenyl], toward three different N-heterocyclic carbenes has been examined. The reaction of 1 with 1 equiv of bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) leads to the formation of a hydrogen-bonded carbene boronic acid adduct, 2, featuring strong O-H···C contacts. In contrast, more basic 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene (IPr2Me2) and 1,3-di-tert-butylimidazol-2-ylidene (ItBu) deprotonate 1 smoothly to afford the rare anionic boranuidacarboxylic acids 3 and 4, respectively. Structural determination reveals that 3 and 4 bear unprecedented bifurcated hydrogen bonds with a BO- unit as a double hydrogen-bond acceptor, which contribute significantly to stabilization of the highly reactive B═O double bond. Quantum-mechanical calculations were conducted to disclose the unique electronic properties of the multiple bonds, as well as the important hydrogen bonds in these compounds.

20.
Nat Chem ; 9(5): 411-419, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28430192

RESUMEN

The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing.


Asunto(s)
Materiales Biomiméticos/metabolismo , Canales Iónicos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Ciclodextrinas/química , Cisteína/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Canales Iónicos/síntesis química , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Nanoporos , Oligopéptidos/síntesis química , Oligopéptidos/química , Fosfatidilcolinas/química , Conformación Proteica en Hélice alfa , Ingeniería de Proteínas , Subunidades de Proteína/síntesis química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...