Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 102, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566092

RESUMEN

BACKGROUND: Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS: In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS: This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS: This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Cricetinae , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/metabolismo , Adenoviridae/genética , Línea Celular Tumoral , Apolipoproteína A-I/genética , Macaca mulatta , Mesocricetus , Colesterol
2.
FEBS Open Bio ; 14(5): 831-842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531630

RESUMEN

The important role of cholesterol in tumor metastasis has been widely studied in recent years. Ezetimibe is currently the only selective cholesterol uptake inhibitor on the market. Here, we explored the effect of ezetimibe on breast cancer metastasis by studying its impact on breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Differential gene expression analysis and validation were also carried out to compare ezetimibe-treated and untreated breast cancer cells. Finally, breast cancer cells overexpressing TGFß2 were constructed, and the effect of TGFß2 on the migration and invasion of ezetimibe-treated breast cancer cells was examined. Our results show that ezetimibe treatment of breast cancer cells inhibited cell migration, invasion, and EMT, and it significantly suppressed the expression of TGFß2. Overexpression of TGFß2 reversed the inhibitory effect of ezetimibe on the migration and invasion of breast cancer cells. Taken together, our results suggest that ezetimibe might be a potential candidate for the treatment of breast cancer metastasis.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Ezetimiba , Factor de Crecimiento Transformador beta2 , Neoplasias de la Mama Triple Negativas , Humanos , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ezetimiba/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Invasividad Neoplásica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38375821

RESUMEN

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Integrina beta4 , Kalinina , Factores Reguladores Miogénicos , Proteínas Proto-Oncogénicas c-akt , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Integrina beta4/genética , Integrina beta4/metabolismo , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Oxaliplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Kalinina/genética , Kalinina/metabolismo
4.
Heliyon ; 9(11): e21343, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027998

RESUMEN

Cholesterol levels were strongly associated with tumor progression and metastasis. Targeted cholesterol metabolism has broad prospects in tumor treatment. Ezetimibe, the only FDA-approved inhibitor of cholesterol absorption, has been reported to be able to inhibit angiogenesis in liver cancer. However, the efficacy and specific mechanisms of Ezetimibe in the treatment of Triple-Negative Breast Cancer (TNBC)have not been reported. Our research shows Ezetimibe inhibits TNBC cell proliferation and blocks the cell cycle in the G1 phase. Mechanistically, Ezetimibe inhibits the activation of PDGFRß/AKT pathway, thereby promoting cell cycle arrest and inhibiting cell proliferation. By overexpressing PDGFRß in TNBC cells, we found that PDGFRß significantly reduced the inhibitory effect of Ezetimibe on TNBC cell proliferation and the cell cycle. Similarly, SC79, an AKT agonist, can reduce the proliferation inhibitory and cycle-blocking effects of Ezetimibe on TNBC cells. Furthermore, the AKT inhibitor MK2206 enhanced the inhibitory effect of Ezetimibe on the cell cycle and proliferation ability of TNBC cells overexpressing PDGFRß. In xenograft tumor models, we also found that Ezetimibe inhibited TNBC growth, an effect that can be blocked by overexpression of PDGFR or activation of AKT. In summary, we have demonstrated that EZ inhibits the PDGFR/AKT pathway, thereby halting TNBC cycle progression and tumor growth.

5.
Cell Biosci ; 13(1): 188, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37828613

RESUMEN

Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.

6.
Nat Commun ; 14(1): 4367, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474548

RESUMEN

The codependency of cholesterol metabolism sustains the malignant progression of glioblastoma (GBM) and effective therapeutics remain scarce. In orthotopic GBM models in male mice, we identify that codependent cholesterol metabolism in tumors induces phagocytic dysfunction in monocyte-derived tumor-associated macrophages (TAMs), resulting in disease progression. Manipulating cholesterol efflux with apolipoprotein A1 (ApoA1), a cholesterol reverse transporter, restores TAM phagocytosis and reactivates TAM-T cell antitumor immunity. Cholesterol metabolomics analysis of in vivo-sorted TAMs further reveals that ApoA1 mediates lipid-related metabolic remodeling and lowers 7-ketocholesterol levels, which directly inhibits tumor necrosis factor signaling in TAMs through mitochondrial translation inhibition. An ApoA1-armed oncolytic adenovirus is also developed, which restores antitumor immunity and elicits long-term tumor-specific immune surveillance. Our findings provide insight into the mechanisms by which cholesterol metabolism impairs antitumor immunity in GBM and offer an immunometabolic approach to target cholesterol disturbances in GBM.


Asunto(s)
Glioblastoma , Virus Oncolíticos , Masculino , Ratones , Animales , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Fagocitosis , Colesterol/metabolismo , Microambiente Tumoral
7.
Sci Rep ; 13(1): 10508, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380717

RESUMEN

A fundamental goal in cancer-associated genome sequencing is to identify the key genes. Protein-protein interactions (PPIs) play a crucially important role in this goal. Here, human reference interactome (HuRI) map was generated and 64,006 PPIs involving 9094 proteins were identified. Here, we developed a physical link and co-expression combinatory network construction (PLACE) method for genes of interest, which provides a rapid way to analyze genome sequencing datasets. Next, Kaplan‒Meier survival analysis, CCK8 assays, scratch wound assays and Transwell assays were applied to confirm the results. In this study, we selected single-cell sequencing data from patients with hepatocellular carcinoma (HCC) in GSE149614. The PLACE method constructs a protein connection network for genes of interest, and a large fraction (80%) of the genes (screened by the PLACE method) were associated with survival. Then, PLACE discovered that transmembrane protein 14B (TMEM14B) was the most significant prognostic key gene, and target genes of TMEM14B were predicted. The TMEM14B-target gene regulatory network was constructed by PLACE. We also detected that TMEM14B-knockdown inhibited proliferation and migration. The results demonstrate that we proposed a new effective method for identifying key genes. The PLACE method can be used widely and make outstanding contributions to the tumor research field.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/genética , Mapeo Cromosómico , Análisis de Secuencia de ARN
8.
Org Lett ; 25(17): 3094-3098, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087758

RESUMEN

We report a four-component ring-opening reaction of pyrroles via C-N bond cleavage. In this process, elemental sulfur is used as the sulfur source of thiazole and thioamide and the reductant of olefin. A series of benzothiazoles functionalized with thiopropionamides at the C2 position were synthesized using this method. A plausible reaction mechanism is proposed based on the concise control experiments.

9.
Org Biomol Chem ; 21(7): 1379-1383, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36649081

RESUMEN

An unprecedented protocol has been developed for the preparation of highly functionalized chromeno[4,3-b]pyrrol-4(1H)-ones, which are not only valuable architectures of many biologically active molecules but also key building blocks for rich photophysical properties. The transformation proceeded through chemoselective intermolecular α-carbon nucleophilic attacking/ring-opening/Michael addition/deprotonation aromatization processes from 4-aminocoumarins and 2-furylcarbinols.

10.
Front Immunol ; 13: 1017574, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451817

RESUMEN

Insufficient intratumoral T-cell infiltration and lack of tumor-specific immune surveillance in tumor microenvironment (TME) hinder the progression of cancer immunotherapy. In this study, we explored a recombinant vaccinia virus encoding an EpCAM BiTE (VV-EpCAM BiTE) to modulate the immune suppressive microenvironment to enhance antitumor immunity in several solid tumors. VV-EpCAM BiTE effectively infected, replicated and lysed malignant cells. The EpCAM BiTE secreted from infected malignants effectively mediated the binding of EpCAM-positive tumor cells and CD3ϵ on T cells, which led to activation of naive T-cell and the release of cytokines, such as IFN-γ and IL-2. Intratumoral administration of VV-EpCAM BiTE significantly enhanced antitumor activity in malignancies with high other than with low EpCAM expression level. In addition, immune cell infiltration was significantly increased in TME upon VV-EpCAM BiTE treatment, CD8+ T cell exhaustion was reduced and T-cell-mediated immune activation was markedly enhanced. Taken together, VV-EpCAM BiTE sophistically combines the antitumor advantages of bispecific antibodies and oncolytic viruses, which provides preclinical evidence for the therapeutic potential of VV-EpCAM BiTE.


Asunto(s)
Neoplasias , Virus Oncolíticos , Vaccinia , Humanos , Virus Oncolíticos/genética , Virus Vaccinia/genética , Molécula de Adhesión Celular Epitelial/genética , Neoplasias/terapia , Vigilancia Inmunológica , Microambiente Tumoral
11.
Front Immunol ; 13: 869061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248907

RESUMEN

Background: Although isocitrate dehydrogenase (IDH) mutation serves as a prognostic signature for routine clinical management of glioma, nearly 90% of glioblastomas (GBM) patients have a wild-type IDH genotype (IDHWT) and lack reliable signatures to identify distinct entities. Methods: To develop a robust prognostic signature for IDHWT GBM patients, we retrospectively analyzed 4 public datasets of 377 primary frozen tumor tissue transcriptome profiling and clinical follow-up data. Samples were divided into a training dataset (204 samples) and a validation (173 samples) dataset. A prognostic signature consisting of 21 metabolism-related gene pairs (MRGPs) was developed based on the relative ranking of single-sample gene expression levels. GSEA and immune subtype analyses were performed to reveal differences in biological processes between MRGP risk groups. The single-cell RNA-seq dataset was used to examine the expression distribution of each MRG constituting the signature in tumor tissue subsets. Finally, the association of MRGs with tumor progression was biologically validated in orthotopic GBM models. Results: The metabolic signature remained an independent prognostic factor (hazard ratio, 5.71 [3.542-9.218], P < 0.001) for stratifying patients into high- and low-risk levels in terms of overall survival across subgroups with MGMTp methylation statuses, expression subtypes, and chemo/ratio therapies. Immune-related biological processes were significantly different between MRGP risk groups. Compared with the low-risk group, the high-risk group was significantly enriched in humoral immune responses and phagocytosis processes, and had more monocyte infiltration and less activated DC, NK, and γδ T cell infiltration. scRNA-seq dataset analysis identified that the expression levels of 5 MRGs (ABCA1, HMOX1, MTHFD2, PIM1, and PTPRE) in TAMs increased with metabolic risk. With tumor progression, the expression level of ABCA1 in TAMs was positively correlated with the population of TAMs in tumor tissue. Downregulation of ABCA1 levels can promote TAM polarization towards an inflammatory phenotype and control tumor growth. Conclusions: The metabolic signature is expected to be used in the individualized management of primary IDHWT GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Transportador 1 de Casete de Unión a ATP , Biomarcadores , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Pronóstico , Estudios Retrospectivos , Macrófagos Asociados a Tumores
12.
J Org Chem ; 87(12): 7955-7967, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35653697

RESUMEN

An efficient TfOH-catalyzed cascade C-H/N-H annulation of indole-2-carboxamides with benzoquinones has been developed for the synthesis of tetracyclic indolo[2,3-c]quinolinones. This reaction exhibits excellent chemo-/regioselectivity, achieving functionalization of the C-3 of indole and N-H of the amide moiety to form the new C-C and C-N bonds. Various expected products were synthesized from readily available starting materials in good to high yields with a wide substrate scope and good functional group tolerance. Among all synthetic products, 3d showed the most potent cytotoxicity toward the 4T1 cancer cell line with an IC50 value of 0.62 ± 0.05 µM. In vivo study demonstrated that 3d remarkably suppressed 4T1 xenograft tumor growth without body weight loss.


Asunto(s)
Quinolonas , Benzoquinonas , Catálisis , Humanos , Indoles/química , Quinolonas/farmacología
13.
ACS Omega ; 7(1): 1380-1394, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036799

RESUMEN

An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 µM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 µM.

14.
ACS Omega ; 7(2): 2337-2343, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35071921

RESUMEN

An efficient and green route of C-C bond formation was disclosed to construct 2,3-diaryl-1,4-diketones from α-methylene ketones by the catalysis of tetrabutylammonium iodide (TBAI) with tert-butyl hydroperoxide (TBHP) as an oxidant in water. This reaction affords the desired products in good to excellent yields from readily available materials, with a broad substrate scope, good functional group tolerance, and mild reaction conditions. Furthermore, tetrasubstituted furan and pyrrole were smoothly constructed from α-methylene ketones in one pot with 96 and 90% yields, respectively.

15.
Environ Sci Pollut Res Int ; 29(23): 35269-35283, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35060051

RESUMEN

The overconsumption of natural resources and the production of waste are causing severe degradation of our environment. Generic technologies (GTs) of eco-friendly materials could alleviate environmental pollution, solve resource and environment-related conflicts, and promote society's sustainable development. The identification of GTs is the first step towards GT innovation and establishing a supply of eco-friendly materials; thus, how to accurately identify GTs is an important challenge for governments and enterprises. In this paper, a new method that integrates latent Dirichlet allocation (LDA), term frequency-inverse document frequency (TF-IDF), social network analysis (SNA), and a hidden Markov model (HMM) is proposed for GT identification. The LDA model was employed to extract hidden information of eco-friendly materials. In addition, scientific linkage, betweenness centrality, technology co-occurrence rate, the number of patents, and the number of valid countries or territories designated by the patent were selected to analyse the technology topic characteristics. Then, the fundamentality, pervasiveness, and benefit characteristics of GTs were combined to identify GTs of eco-friendly materials. On this basis, HMM was employed to predict the evolution trend of GTs. The results show that sixteen technologies are GTs of eco-friendly materials. Furthermore, degradable composite materials and cellulose extraction methods will become the focus of research in the future. These studies can provide a new method for the identification of GTs of eco-friendly materials and help nations or enterprises to make effective decisions to develop GTs, minimizing the burden on the environment.


Asunto(s)
Contaminación Ambiental , Tecnología , Minería de Datos
16.
J Immunother Cancer ; 9(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34949694

RESUMEN

BACKGROUND: In addition to directly lysing tumors, oncolytic viruses also induce antitumor immunity by recruiting and activating immune cells in the local tumor microenvironment. However, the activation of the immune cells induced by oncolytic viruses is always accompanied by high-level expression of immune checkpoints in these cells, which may reduce the efficacy of the oncolytic viruses. The aim of this study is to arm the oncolytic vaccinia virus (VV) with immune checkpoint blockade to enhance its antitumor efficacy. METHODS: Through homologous recombination with the parental VV, an engineered VV-scFv-TIGIT was produced, which encodes a single-chain variable fragment (scFv) targeting T-cell immunoglobulin and ITIM domain (TIGIT). The antitumor efficacy of the VV-scFv-TIGIT was explored in several subcutaneous and ascites tumor models. The antitumor efficacy of VV-scFv-TIGIT combined with programmed cell death 1 (PD-1) or lymphocyte-activation gene 3 (LAG-3) blockade was also investigated. RESULTS: The VV-scFv-TIGIT effectively replicated in tumor cells and lysed them, and prompt the infected tumor cells to secret the functional scFv-TIGIT. Compared with control VV, intratumoral injection of VV-scFv-TIGIT in several mouse subcutaneous tumor models showed superior antitumor efficacy, accompanied by more T cell infiltration and a higher degree of CD8+ T cells activation. Intraperitoneal injection of VV-scFv-TIGIT in a mouse model of malignant ascites also significantly improved T cell infiltration and CD8+ T cell activation, resulting in more than 90% of the tumor-bearing mice being cured. Furthermore, the antitumor immune response induced by VV-scFv-TIGIT was dependent on CD8+ T cells which mediated a long-term immunological memory and a systemic antitumor immunity against the same tumor. Finally, the additional combination of PD-1 or LAG-3 blockade further enhanced the antitumor efficacy of VV-scFv-TIGIT, increasing the complete response rate of tumor-bearing mice. CONCLUSIONS: Oncolytic virotherapy using engineered VV-scFv-TIGIT was an effective strategy for cancer immunotherapy. Administration of VV-scFv-TIGIT caused a profound reshaping of the suppressive tumor microenvironment from 'cold' to 'hot' status. VV-scFv-TIGIT also synergized with PD-1 or LAG-3 blockade to achieve a complete response to tumors with poor response to VV or immune checkpoint blockade monotherapy.


Asunto(s)
Antígenos CD/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Virus Oncolíticos/efectos de los fármacos , Receptores Inmunológicos/inmunología , Virus Vaccinia/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Ratones , Proteína del Gen 3 de Activación de Linfocitos
17.
Org Lett ; 23(15): 5911-5916, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34283626

RESUMEN

An efficient and atom-economical silver-mediated [2 + 2 + 1] cyclization protocol for the synthesis of 3,4-fused-ring-substituted and 2,5-unsubstituted selenophenes or thiophenes has been developed. Two C-Se/C-S bonds and one C-C bond were rapidly constructed in one step. Readily accessible substrates, commercially available elemental selenium/sulfur, and good functional group tolerance make this procedure attractive for the synthesis of π-conjugated material molecules.

18.
J Org Chem ; 86(9): 6755-6764, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33847128

RESUMEN

An atom economic procedure for the regioselective synthesis of bridged seven-membered-ring compounds from simple reactants such as ynones and indene-1,3-dione has been developed. This process was realized through the one-pot reactions of ring-expansion of indene-1,3-dione with alkynyl ketones and successive formal [4+2] cycloaddition. The Michael addition reaction is the key for the regioselectivity of the formal [4+2] cycloaddition.

19.
EBioMedicine ; 64: 103240, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33581644

RESUMEN

BACKGROUND: Oncolytic virotherapy with vaccinia virus (VV) can lead to effective anti-tumor immunity by turning "cold" tumors into "hot" tumors. However, its therapeutic potential is affected by the tumor's local immunosuppressive tumor microenvironment (TME). Therefore, it is necessary to explore the use of immune checkpoint inhibitors to arm oncolytic VVs to enhance their anti-tumor efficacy. METHODS: A novel recombinant oncolytic VV, VV-α-TIGIT, which encoded a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT) was generated by homologous recombination with a shuttle plasmid. The anti-tumor efficacy of the VV-α-TIGIT was investigated in several subcutaneous and ascites tumor models. FINDINGS: The functional α-TIGIT was sufficiently produced and secreted by tumor cells infected with VV-α-TIGIT, which effectively replicated in tumor cells leading to significant oncolysis. Intratumoral injection of VV-α-TIGIT improved anti-tumor efficacy in several murine subcutaneous tumor models compared to VV-Control (without α-TIGIT insertion). Intraperitoneal injection of VV-α-TIGIT achieved approximately 70% of complete tumor regression in an ascites tumor model. At the same time, treatment with VV-α-TIGIT significantly increased the recruitment and activation of T cells in TME. Moreover, the in vivo anti-tumor activity of VV-α-TIGIT was largely dependent on CD8+ T cell-mediated immunity. Finally, the tumor-bearing mice cured of VV-α-TIGIT treatment resisted rechallenge with the same tumor cells, suggesting a long-term persistence of tumor-specific immunological memory. INTERPRETATION: The recombinant oncolytic virus VV-α-TIGIT successfully combines the advantages of oncolytic virotherapy and intratumorally expression of immune checkpoint inhibitor against TIGIT. This novel strategy can provide information on the optimal design of novel antibody-armed oncolytic viruses for cancer immunotherapy. FUNDING: This work was supported by the National Natural Science Foundation of China (81773255, 81472820, and 81700037), the Science and Technology Innovation Foundation of Nanjing University (14913414), and the Natural Science Foundation of Jiangsu Province of China (BK20171098).


Asunto(s)
Anticuerpos Monoclonales/genética , Vectores Genéticos/genética , Inmunoterapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Virus Vaccinia/genética , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Orden Génico , Ingeniería Genética , Vectores Genéticos/administración & dosificación , Humanos , Memoria Inmunológica , Inmunofenotipificación , Masculino , Ratones , Virus Oncolíticos/inmunología , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/inmunología , Receptores de Antígenos de Linfocitos T/antagonistas & inhibidores , Linfocitos T/metabolismo , Transgenes , Resultado del Tratamiento , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Org Lett ; 22(16): 6532-6536, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32806175

RESUMEN

A novel and efficient synthesis of aza-eight-membered ring-fused indolines has been developed. This process is realized by zinc-catalyzed C2 alkylation of indoles and subsequent base-promoted ring expansion of the newly formed six-membered ring with alkynes. Easily accessible starting materials, good functional group tolerance, and high atom economy make this procedure attractive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...