Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Opt Express ; 32(6): 8959-8973, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571141

RESUMEN

In current optical systems, defocus blur is inevitable due to the constrained depth of field. However, it is difficult to accurately identify the defocus amount at each pixel position as the point spread function changes spatially. In this paper, we introduce a histogram-invariant spatial aliasing sampling method for reconstructing all-in-focus images, which addresses the challenge of insufficient pixel-level annotated samples, and subsequently introduces a high-resolution network for estimating spatially varying defocus maps from a single image. The accuracy of the proposed method is evaluated on various synthetic and real data. The experimental results demonstrate that our proposed model outperforms state-of-the-art methods for defocus map estimation significantly.

2.
Neural Netw ; 173: 106165, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340469

RESUMEN

Single image dehazing is a challenging computer vision task for other high-level applications, e.g., object detection, navigation, and positioning systems. Recently, most existing dehazing methods have followed a "black box" recovery paradigm that obtains the haze-free image from its corresponding hazy input by network learning. Unfortunately, these algorithms ignore the effective utilization of relevant image priors and non-uniform haze distribution problems, causing insufficient or excessive dehazing performance. In addition, they pay little attention to image detail preservation during the dehazing process, thus inevitably producing blurry results. To address the above problems, we propose a novel priors-assisted dehazing network (called PADNet), which fully explores relevant image priors from two new perspectives: attention supervision and detail preservation. For one thing, we leverage the dark channel prior to constrain the attention map generation that denotes the haze pixel position information, thereby better extracting non-uniform feature distributions from hazy images. For another, we find that the residual channel prior of the hazy images contains rich structural information, so it is natural to incorporate it into our dehazing architecture to preserve more structural detail information. Furthermore, since the attention map and dehazed image are simultaneously predicted during the convergence of our model, a self-paced semi-curriculum learning strategy is utilized to alleviate the learning ambiguity. Extensive quantitative and qualitative experiments on several benchmark datasets demonstrate that our PADNet can perform favorably against existing state-of-the-art methods. The code will be available at https://github.com/leandepk/PADNet.


Asunto(s)
Algoritmos , Benchmarking , Aprendizaje
3.
Anal Methods ; 16(10): 1496-1507, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38372130

RESUMEN

For spectrometers, baseline drift seriously affects the measurement and quantitative analysis of spectral data. Deep learning has recently emerged as a powerful method for baseline correction. However, the dependence on vast amounts of paired data and the difficulty in obtaining spectral data limit the performance and development of deep learning-based methods. Therefore, we solve these problems from the network architecture and training framework. For the network architecture, a Learned Feature Fusion (LFF) module is designed to improve the performance of U-net, and a three-stage training frame is proposed to train this network. Specifically, the LFF module is designed to adaptively integrate features from different scales, greatly improving the performance of U-net. For the training frame, stage 1 uses airPLS to ameliorate the problem of vast amounts of paired data, stage 2 uses synthetic spectra to further ease reliance on real spectra, and stage 3 uses contrastive learning to reduce the gap between synthesized and real spectra. The experiments show that the proposed method is a powerful tool for baseline correction and possesses potential for application in spectral quantitative analysis.

4.
Bioengineering (Basel) ; 10(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135976

RESUMEN

Wound image classification is a crucial preprocessing step to many intelligent medical systems, e.g., online diagnosis and smart medical. Recently, Convolutional Neural Network (CNN) has been widely applied to the classification of wound images and obtained promising performance to some extent. Unfortunately, it is still challenging to classify multiple wound types due to the complexity and variety of wound images. Existing CNNs usually extract high- and low-frequency features at the same convolutional layer, which inevitably causes information loss and further affects the accuracy of classification. To this end, we propose a novel High and Low-frequency Guidance Network (HLG-Net) for multi-class wound classification. To be specific, HLG-Net contains two branches: High-Frequency Network (HF-Net) and Low-Frequency Network (LF-Net). We employ pre-trained models ResNet and Res2Net as the feature backbone of the HF-Net, which makes the network capture the high-frequency details and texture information of wound images. To extract much low-frequency information, we utilize a Multi-Stream Dilation Convolution Residual Block (MSDCRB) as the backbone of the LF-Net. Moreover, a fusion module is proposed to fully explore informative features at the end of these two separate feature extraction branches, and obtain the final classification result. Extensive experiments demonstrate that HLG-Net can achieve maximum accuracy of 98.00%, 92.11%, and 82.61% in two-class, three-class, and four-class wound image classifications, respectively, which outperforms the previous state-of-the-art methods.

5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-821171

RESUMEN

@#[Abstract] Objective: To investigate the effects of forkhead box transcription factor (FOXK2) overexpression on the proliferation, migration, invasion and adhesion of human ovarian cancer SK-OV-3 cells and its related molecular mechanism. Methods: The open reading frame (ORF) of FOXK2 was cloned into lentivirus expression vector, which was then enveloped in HEK293T cells and transfected into human ovarian cancerSK-OV-3cells.TheoverexpressionefficiencywasdetectedbyqPCRandWesternblotting.Theproliferation, migration, invasion and adhesion of SK-OV-3 cells were detected by CCK-8, Scratch-healing, Transwell and Cell adhesion assays respectively, and the expressions of epithelial-mesenchymal transition (EMT) markers were detected by qPCR. Results: The FOXK2 overexpression vector was constructed successfully and packaged into lentivirus, which was then transfected into SK-OV-3 cells. After transfection, the expression of FOXK2 was significantly increased (P<0.01); the proliferation, migration and invasion of SK-OV-3 cells were significantly reduced while the adhesion ability was significantly increased (P<0.05 or P<0.01); and the expression levels of E-cadherin and β-catenin were significantly increased while that of vimentin and fibronection were significantly decreased (all P<0.01). Conclusion: Overexpression of FOXK2 in SK-OV-3 cells leads to a significant decrease in proliferation, migration and invasion but increase in adhesion. The molecular mechanism may be related to the reversion of the EMT process in tumor cells, suggesting that FOXK2 may be a potential target for the diagnosis and treatment of ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA