Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709719

RESUMEN

Biphenyl dioxygenase (BPDO), which is a Rieske-type oxygenase (RO), catalyzes the initial dioxygenation of biphenyl and some polychlorinated biphenyls (PCBs). In order to enhance the degradation ability of BPDO in terms of a broader substrate range, the BphAES283M, BphAEp4-S283M, and BphAERR41-S283M variants were created from the parent enzymes BphAELB400, BphAEp4, and BphAERR41, respectively, by a substitution at one residue, Ser283Met. The results of steady-state kinetic parameters show that for biphenyl, the kcat/Km values of BphAES283M, BphAEp4-S283M, and BphAERR41-S283M were significantly increased compared to those of their parent enzymes. Meanwhile, we determined the steady-state kinetics of BphAEs toward highly chlorinated biphenyls. The results suggested that the Ser283Met substitution enhanced the catalytic activity of BphAEs toward 2,3',4,4'-tetrachlorobiphenyl (2,3',4,4'-CB), 2,2',6,6'-tetrachlorobiphenyl (2,2',6,6'-CB), and 2,3',4,4',5-pentachlorobiphenyl (2,3',4,4',5-CB). We compared the catalytic reactions of BphAELB400 and its variants toward 2,2'-dichlorobiphenyl (2,2'-CB), 2,5-dichlorobiphenyl (2,5-CB), and 2,6-dichlorobiphenyl (2,6-CB). The biochemical data indicate that the Ser283Met substitution alters the orientation of the substrate inside the catalytic site and, thereby, its site of hydroxylation, and this was confirmed by docking experiments. We also assessed the substrate ranges of BphAELB400 and its variants with degradation activity. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the 3-6-chlorinated biphenyls, which are generally very poorly oxidized by most dioxygenases. Collectively, the present work showed a significant effect of mutation Ser283Met on substrate specificity/regiospecificity in BPDO. These will certainly be meaningful elements for understanding the effect of the residue corresponding to position 283 in other Rieske oxygenase enzymes.IMPORTANCE The segment from positions 280 to 283 in BphAEs is located at the entrance of the catalytic pocket, and it shows variation in conformation. In previous works, results have suggested but never proved that residue Ser283 of BphAELB400 might play a role in substrate specificity. In the present paper, we found that the Ser283Met substitution significantly increased the specificity of the reaction of BphAE toward biphenyl, 2,3',4,4'-CB, 2,2',6,6'-CB, and 2,3',4,4',5-CB. Meanwhile, the Ser283Met substitution altered the regiospecificity of BphAE toward 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl. Additionally, this substitution extended the range of PCBs metabolized by the mutated BphAE. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the more highly chlorinated biphenyls (3 to 6 chlorines), which are generally very poorly oxidized by most dioxygenases. We used modeled and docked enzymes to identify some of the structural features that explain the new properties of the mutant enzymes. Altogether, the results of this study provide better insights into the mechanisms by which BPDO evolves to change and/or expand its substrate range and its regiospecificity.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderiaceae/genética , Mutagénesis Sitio-Dirigida , Bifenilos Policlorados/metabolismo , Proteínas Bacterianas/metabolismo , Burkholderiaceae/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ingeniería Genética
2.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32471918

RESUMEN

The genome of Azorhizobium caulinodans ORS571 encodes two chemotaxis response regulators: CheY1 and CheY2. cheY1 is located in a chemotaxis cluster (cheAWY1BR), while cheY2 is located 37 kb upstream of the cheAWY1BR cluster. To determine the contributions of CheY1 and CheY2, we compared the wild type (WT) and mutants in the free-living state and in symbiosis with the host Sesbania rostrata Swim plate tests and capillary assays revealed that both CheY1 and CheY2 play roles in chemotaxis, with CheY2 having a more prominent role than CheY1. In an analysis of the swimming paths of free-swimming cells, the ΔcheY1 mutant exhibited decreased frequency of direction reversal, whereas the ΔcheY2 mutant appeared to change direction much more frequently than the WT. Exopolysaccharide (EPS) production in the ΔcheY1 and ΔcheY2 mutants was lower than that in the WT, but the ΔcheY2 mutant had more obvious EPS defects that were similar to those of the ΔcheY1 ΔcheY2 and Δeps1 mutants. During symbiosis, the levels of competitiveness for root colonization and nodule occupation of ΔcheY1 and ΔcheY2 mutants were impaired compared to those of the WT. Moreover, the competitive colonization ability of the ΔcheY2 mutant was severely impaired compared to that of the ΔcheY1 mutant. Taken together, the ΔcheY2 phenotypes are more severe than the ΔcheY1 phenotype in free-living and symbiotic states, and that of the double mutant resembles the ΔcheY2 single-mutant phenotype. These defects of ΔcheY1 and ΔcheY2 mutants were restored to the WT phenotype by complementation. These results suggest that there are different regulatory mechanisms of CheY1 and CheY2 and that CheY2 is a key chemotaxis regulator under free-living and symbiosis conditions.IMPORTANCEAzorhizobium caulinodans ORS571 is a motile soil bacterium that has the dual capacity to fix nitrogen both under free-living conditions and in symbiosis with Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis to chemoattractants derived from host roots promotes infection and subsequent nodule formation by directing rhizobia to appropriate sites of infection. In this work, we identified and demonstrated that CheY2, a chemotactic response regulator encoded by a gene outside the chemotaxis cluster, is required for chemotaxis and multiple other cell phenotypes. CheY1, encoded by a gene in the chemotaxis cluster, also plays a role in chemotaxis. Two response regulators mediate bacterial chemotaxis and motility in different ways. This work extends the understanding of the role of multiple response regulators in Gram-negative bacteria.


Asunto(s)
Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/fisiología , Quimiotaxis , Interacciones Microbiota-Huesped , Sesbania/microbiología , Azorhizobium caulinodans/genética , Proteínas Bacterianas/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...