Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 170: 108070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330822

RESUMEN

We explored the non-invasive evaluation of the sympathetic nervous system (SNS) by employing two distinct physiological signals: skin sympathetic nerve activity (SKNA), extracted from electrocardiogram (ECG) signals, and electrodermal activity (EDA), a well-studied marker in the context of the SNS assessment. Our investigation focused on cognitive stress and pain; two conditions closely associated with the SNS. We sought to determine if the information and dynamics of EDA could be derived from the novel SKNA signal. To this end, ECG and EDA signals were recorded simultaneously during three experiments aimed at sympathetic stimulation, Valsalva maneuver (VM), Stroop test, and thermal-grill pain test. We calculated the integral area under the rectified SKNA signal (iSKNA) and decomposed the EDA signal to its phasic component (EDAphasic). An average delay of more than 4.6 s was observed in the onset of EDAphasic bursts compared to their corresponding iSKNA bursts. After shifting the EDAphasic segments by the extent of this delay and smoothing the corresponding iSKNA bursts, our results revealed a strong average correlation coefficient of 0.85±0.14 between the iSKNA and EDAphasic bursts, indicating a noteworthy similarity between the two signals. We also reconstructed the EDA signals with time-varying sympathetic (TVSymp) and modified TVSymp (MTVSymp) methods. Then we extracted the following features from iSKNA, EDAphasic, TVSymp, and MTVSymp signals: peak amplitude, average amplitude (aSKNA), standard deviation (vSKNA), and the cumulative duration during which the signals had higher amplitudes than a specified threshold (HaSKNA). A strong average correlation of 0.89±0.18 was found between vSKNA and subjects' self-rated pain levels during the pain test. Our statistical analysis also included applying Linear Mixed-Effects Models to check if there were significant differences in features across baseline and different levels of SNS stimulation. We then assessed the discriminating power of the features using Area Under the Receiver Operating Characteristic Curve (AUROC) and Fisher's Ratio. Finally, using all the four EDA features, a multi-layer perceptron (MLP) classifier reached the classification accuracies 95.56%, 89.29%, and 67.88% for the VM, Stroop, and thermal-grill pain control and stimulation classes. On the other hand, the highest classification accuracies based on SKNA features were achieved using K-nearest neighbors (KNN) (98.89%), KNN (89.29%), and MLP (95.11%) classifiers for the same experiments. Our comparative analysis showed the feasibility of SKNA as a novel tool for assessing the SNS with accurate classification capability, with a faster onset of amplitude increase in response to SNS activity, compared to EDA.


Asunto(s)
Respuesta Galvánica de la Piel , Sistema Nervioso Simpático , Humanos , Sistema Nervioso Simpático/fisiología , Dolor , Electrocardiografía/métodos , Cognición
2.
IEEE J Biomed Health Inform ; 27(9): 4250-4260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37399159

RESUMEN

The current method for assessing pain in clinical practice is subjective and relies on self-reported scales. An objective and accurate method of pain assessment is needed for physicians to prescribe the proper medication dosage, which could reduce addiction to opioids. Hence, many works have used electrodermal activity (EDA) as a suitable signal for detecting pain. Previous studies have used machine learning and deep learning to detect pain responses, but none have used a sequence-to-sequence deep learning approach to continuously detect acute pain from EDA signals, as well as accurate detection of pain onset. In this study, we evaluated deep learning models including 1-dimensional convolutional neural networks (1D-CNN), long short-term memory networks (LSTM), and three hybrid CNN-LSTM architectures for continuous pain detection using phasic EDA features. We used a database consisting of 36 healthy volunteers who underwent pain stimuli induced by a thermal grill. We extracted the phasic component, phasic drivers, and time-frequency spectrum of the phasic EDA (TFS-phEDA), which was found to be the most discerning physiomarker. The best model was a parallel hybrid architecture of a temporal convolutional neural network and a stacked bi-directional and uni-directional LSTM, which obtained a F1-score of 77.8% and was able to correctly detect pain in 15-second signals. The model was evaluated using 37 independent subjects from the BioVid Heat Pain Database and outperformed other approaches in recognizing higher pain levels compared to baseline with an accuracy of 91.5%. The results show the feasibility of continuous pain detection using deep learning and EDA.


Asunto(s)
Dolor Agudo , Aprendizaje Profundo , Humanos , Respuesta Galvánica de la Piel , Redes Neurales de la Computación , Aprendizaje Automático
3.
ACS Appl Mater Interfaces ; 15(22): 26585-26592, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222422

RESUMEN

Microstructural engineering is becoming notably important in the realization of cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries since it is one of the most effective ways to improve the overall performance by enhancing the mechanical and electrochemical properties of cathodes. In this regard, various dopants have been investigated to improve the structural and interfacial stabilities of cathodes with doping. Yet, there is a lack of a systematic understanding of the effects of dopants on microstructural engineering and cell performances. Herein, we show controlling the primary particle size by adopting dopants with different oxidation states and solubilities in the host structure as an effective way for tuning the cathode microstructure and performance. The reduction in the primary particle size of cobalt-free high-nickel layered oxide cathode materials, e.g., LiNi0.95Mn0.05O2 (NM955), with high-valent dopants, such as Mo6+ and W6+, gives a more homogeneous distribution of Li during cycling with suppressed microcracking, cell resistance, and transition-metal dissolution compared to lower-valent dopants, such as Sn4+ and Zr4+. Accordingly, this approach offers promising electrochemical performance with cobalt-free high-nickel layered oxide cathodes.

4.
Comput Biol Med ; 155: 106695, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805230

RESUMEN

Dental pain invokes the sympathetic nervous system, which can be measured by electrodermal activity (EDA). In the dental clinic, accurate quantification of pain is needed because it could enable optimized drug-dose treatments, thereby potentially reducing drug addiction. However, a confounding factor is that during pain there is also lingering residual stress, hence, both contribute to the EDA response. Therefore, we investigated whether EDA can differentiate stress from pain during dental examination. The use of electrical pulp test (EPT) is an ideal approach to tease out the dynamics of stress and mimic pain with lingering residual stress. Once the electrical sensation is felt and reaches a critical current threshold, the subject removes the probe from their tooth, hence, this stage of data represents largely EPT stimulus and the residual stress-induced EDA response is smaller. EPT was performed on necrotic and vital teeth in fifty-one subjects. We defined four different data groups of reactions based on each individual's EPT intensity level expectation based on the visual analog scale (VAS) of their baseline trial, as follows: mild stress, mild stress + EPT, strong stress, and strong stress + EPT. EDA-derived features exhibited significant difference between residual lingering stress + EPT groups and stress groups. We obtained 84.6% accuracy with 76.2% sensitivity and 86.8% specificity with multilayer perceptron in differentiating between pure-stress groups vs. stress + EPT groups. Moreover, EPT induced much greater EDA amplitude and faster response than stress. Our finding suggests that our machine learning approach can discriminate between stress and EPT stimulation in EDA signals.


Asunto(s)
Respuesta Galvánica de la Piel , Dolor , Humanos , Clínicas Odontológicas , Sistema Nervioso Simpático/fisiología , Aprendizaje Automático
5.
Animals (Basel) ; 13(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36670768

RESUMEN

The continuous monitoring of stress, pain, and discomfort is key to providing a good quality of life for horses. The available tools based on observation are subjective and do not allow continuous monitoring. Given the link between emotions and sympathetic autonomic arousal, heart rate and heart rate variability are widely used for the non-invasive assessment of stress and pain in humans and horses. However, recent advances in pain and stress monitoring are increasingly using electrodermal activity (EDA), as it is a more sensitive and specific measure of sympathetic arousal than heart rate variability. In this study, for the first time, we have collected EDA signals from horses and tested the feasibility of the technique for the assessment of sympathetic arousal. Fifteen horses (six geldings, nine mares, aged 13.11 ± 5.4 years) underwent a long-lasting stimulus (Feeding test) and a short-lasting stimulus (umbrella Startle test) to elicit sympathetic arousal. The protocol was approved by the University of Connecticut. We found that EDA was sensitive to both stimuli. Our results show that EDA can capture sympathetic activation in horses and is a promising tool for non-invasive continuous monitoring of stress, pain, and discomfort in horses.

6.
Int Endod J ; 56(3): 356-368, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36367715

RESUMEN

AIMS: To explore whether electrodermal activity (EDA) can serve as a complementary tool for pulpal diagnosis (Aim 1) and an objective metric to assess dental pain before and after local anaesthesia (Aim 2). METHODOLOGY: A total of 53 subjects (189 teeth) and 14 subjects (14 teeth) were recruited for Aim 1 and Aim 2, respectively. We recorded EDA using commercially available devices, PowerLab and Galvanic Skin Response (GSR) Amplifier, in conjunction with cold and electric pulp testing (EPT). Participants rated their level of sensation on a 0-10 visual analogue scale (VAS) after each test. We recorded EPT-stimulated EDA activity before and after the administration of local anaesthesia for participants who required root canal treatment (RCT) due to painful pulpitis. The raw data were converted to the time-varying index of sympathetic activity (TVSymp), a sensitive and specific parameter of EDA. Statistical analysis was performed using Python 3.6 and its Scikit-post hoc library. RESULTS: Electrodermal activity was upregulated by the stimuli of cold and EPT testing in the normal pulp. TVSymp signals were significantly increased in vital pulp compared to necrotic pulp by both cold test and EPT. Teeth that exhibited intensive sensitivity to cold with or without lingering pain had increased peak numbers of TVSymp than teeth with mild sensation to cold. Pre- and post-anaesthesia EDA activity and VAS scores were recorded in patients with painful pulpitis. Post-anaesthesia EDA signals were significantly lower compared to pre-anaesthesia levels. Approximately 71% of patients (10 of 14 patients) experienced no pain during treatment and reported VAS score of 0 or 1. The majority of patients (10 of 14) showed a reduction of TVSymp after the administration of anaesthesia. Two of three patients who experienced increased pain during RCT (post-treatment VAS > pre-treatment VAS) exhibited increased post-anaesthesia TVSymp. CONCLUSIONS: Our data show promising results for using EDA in pulpal diagnosis and for assessing dental pain. Whilst our testing was limited to subjects who had adequate communication skills, our future goal is to be able to use this technology to aid in the endodontic diagnosis of patients who have limited communication ability.


Asunto(s)
Pulpitis , Humanos , Pulpitis/diagnóstico , Pulpitis/terapia , Respuesta Galvánica de la Piel , Dimensión del Dolor/métodos , Dolor/diagnóstico , Dolor/etiología , Pulpa Dental
7.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433449

RESUMEN

Bio-signals are being increasingly used for the assessment of pathophysiological conditions including pain, stress, fatigue, and anxiety. For some approaches, a single signal is not sufficient to provide a comprehensive diagnosis; however, there is a growing consensus that multimodal approaches allow higher sensitivity and specificity. For instance, in visceral pain subjects, the autonomic activation can be inferred using electrodermal activity (EDA) and heart rate variability derived from the electrocardiogram (ECG), but including the muscle activation detected from the surface electromyogram (sEMG) can better differentiate the disease that causes the pain. There is no wearable device commercially capable of collecting these three signals simultaneously. This paper presents the validation of a novel multimodal low profile wearable data acquisition device for the simultaneous collection of EDA, ECG, and sEMG signals. The device was validated by comparing its performance to laboratory-scale reference devices. N = 20 healthy subjects were recruited to participate in a four-stage study that exposed them to an array of cognitive, orthostatic, and muscular stimuli, ensuring the device is sensitive to a range of stressors. Time and frequency domain analyses for all three signals showed significant similarities between our device and the reference devices. Correlation of sEMG metrics ranged from 0.81 to 0.95 and EDA/ECG metrics showed few instances of significant difference in trends between our device and the references. With only minor observed differences, we demonstrated the ability of our device to collect EDA, sEMG, and ECG signals. This device will enable future practical and impactful advances in the field of chronic pain and stress measurement and can confidently be implemented in related studies.


Asunto(s)
Respuesta Galvánica de la Piel , Dispositivos Electrónicos Vestibles , Humanos , Electromiografía , Electrocardiografía , Dolor
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1981-1984, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085715

RESUMEN

Prolonged sleepiness can lead to impairment of cognitive and physical performance and may cause unfortunate accidents. Speech signals are easily accessible using a simple microphone or other means, hence, automated approaches for accurate sleepiness detection from speech signals are desired to prevent degradation in human performance and accidental injury. Sleepiness is known to affect acoustic patterns of speech so that they are different from those of normal speech, and this change is also independent of the language being spoken. To date, there have been no studies examining linguistic-independent sleepy speech detection. We used two different languages, English and German, to detect sleepy speech, where the former was used to train/validate and the latter to test the effectiveness of machine and deep learning models. Specifically, we trained ResNet50, a deep learning model, and five machine learning models with relevant vocal features. Speech data segments from three English-speaking subjects were used for training the model and segments from an English-speaking subject were used for validation. We then tested ResNet50 and the five different machine-learning models using speech data segments from one German-speaking subject. Deep learning far outperformed all of the machine learning approaches. The accuracy, sensitivity, specificity, and geometric mean values were found to be 0.96, 0.92, 0.99, and 0.95, respectively, using ResNet50 on the test data. Our preliminary results suggest that sleepiness can be accurately detected independently from linguistic speech. Clinical Relevance-It is not known if sleepiness can be detected regardless of the language spoken. Our results show the feasibility of accurate sleepiness detection using deep learning even when tested with a different language than trained on.


Asunto(s)
Somnolencia , Habla , Acústica , Humanos , Lenguaje , Lingüística
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2475-2478, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085748

RESUMEN

Appropriate prescription of pain medication is challenging because pain is difficult to quantify due to the subjectiveness of pain assessment. Currently, clinicians must entirely rely on pain scales based on patients' assessments. This has been alleged to be one of the causes of drug overdose and addiction, and a contributor to the opioid crisis. Therefore, there is an urgent unmet need for objective pain assessment. Furthermore, as pain can occur anytime and anywhere, ambulatory pain monitoring would be welcomed in practice. In our previous study, we developed electrodermal activity (EDA)-derived indices and implemented them in a smartphone application that can communicate via Bluetooth to an EDA wearable device. While we previously showed high accuracy for high-level pain detection, multi-level pain detection has not been demonstrated. In this paper, we tested our smartphone application with a multi-level pain-induced dataset. The dataset was collected from fifteen subjects who underwent four levels of pain-inducing electrical pulse (EP) stimuli. We then performed statistical analyses and machine-learning techniques to classify multiple pain levels. Significant differences were observed in our EDA-derived indices among no-pain, low-pain, and high-pain segments. A random forest classifier showed 62.6% for the balanced accuracy, and a random forest regressor exhibited 0.441 for the coefficient of determination. Clinical Relevance - This is one of the first studies to present a smartphone application for detecting multiple levels of pain in real time using an EDA wearable device. This work shows the feasibility of ambulatory pain monitoring which can potentially be useful for chronic pain management.


Asunto(s)
Respuesta Galvánica de la Piel , Teléfono Inteligente , Humanos , Monitoreo Ambulatorio , Dolor/diagnóstico , Dimensión del Dolor
10.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35590866

RESUMEN

The most traditional sites for electrodermal activity (EDA) data collection, palmar locations such as fingers or palms, are not usually recommended for ambulatory monitoring given that subjects have to use their hands regularly during their daily activities, and therefore, alternative sites are often sought for EDA data collection. In this study, we collected EDA signals (n = 23 subjects, 19 male) from four measurement sites (forehead, back of neck, finger, and inner edge of foot) during cognitive stress and induction of mild motion artifacts by walking and one-handed weightlifting. Furthermore, we computed several EDA indices from the EDA signals obtained from different sites and evaluated their efficiency to classify cognitive stress from the baseline state. We found a high within-subject correlation between the EDA signals obtained from the finger and the feet. Consistently high correlation was also found between the finger and the foot EDA in both the phasic and tonic components. Statistically significant differences were obtained between the baseline and cognitive stress stage only for the EDA indices computed from the finger and the foot EDA. Moreover, the receiver operating characteristic curve for cognitive stress detection showed a higher area-under-the-curve for the EDA indices computed from the finger and foot EDA. We also evaluated the robustness of the different body sites against motion artifacts and found that the foot EDA location was the best alternative to other sites.


Asunto(s)
Artefactos , Respuesta Galvánica de la Piel , Recolección de Datos , Pie , Humanos , Masculino , Movimiento (Física)
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6920-6923, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892695

RESUMEN

The electrodermal activity (EDA) signal is a sensitive and non-invasive surrogate measure of sympathetic function. Use of EDA has increased in popularity in recent years for such applications as emotion and stress recognition; assessment of pain, fatigue, and sleepiness; diagnosis of depression and epilepsy; and other uses. Recently, there have been several studies using ambulatory EDA recordings, which are often quite useful for analysis of many physiological conditions. Because ambulatory monitoring uses wearable devices, EDA signals are often affected by noise and motion artifacts. An automated noise and motion artifact detection algorithm is therefore of utmost importance for accurate analysis and evaluation of EDA signals. In this paper, we present machine learning-based algorithms for motion artifact detection in EDA signals. With ten subjects, we collected two simultaneous EDA signals from the right and left hands, while instructing the subjects to move only the right hand. Using these data, we proposed a cross-correlation-based approach for non-biased labeling of EDA data segments. A set of statistical, spectral and model-based features were calculated which were then subjected to a feature selection algorithm. Finally, we trained and validated several machine learning methods using a leave-one-subject-out approach. The classification accuracy of the developed model was 83.85% with a standard deviation of 4.91%, which was better than a recent standard method that we considered for comparison to our algorithm.


Asunto(s)
Artefactos , Respuesta Galvánica de la Piel , Algoritmos , Humanos , Aprendizaje Automático , Movimiento (Física)
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6941-6944, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892700

RESUMEN

Objective pain quantification is an important but difficult goal. Electrodermal activity (EDA) has been widely explored for this purpose, given its reported sensitivity to pain. However, cognitive stress can hinder successful estimation of physical pain when using EDA signals. We collected EDA signals from ten subjects (5 male and 5 female) undergoing pain stimulation, and calculated phasic, tonic, and frequency-domain features. Each subject experienced pain with and without stress. Three low and three high pain sessions were induced using two thermal grills (low-level for visual analog scale [VAS] 4 or 5 and high-level for VAS 7 or more). The Stroop test was performed for inducing cognitive stress. Significant differences between EDA features of painless and pain segments were observed. Significant differences between no pain and stress were also observed. Furthermore, we compared differences in EDA features between females and males under pain and cognitive stress. Frequency-domain EDA features of pain increased with stress for both females and males. Frequency-domain features derived from females also showed higher standard deviation than did those derived from males. We performed machine learning analysis and evaluated the models using leave-one-subject-out cross-validation. We obtained balanced accuracies of 63.5%, 72.4%, and 53.2% (combined, male, and female) when using training data of the same sex and 47.6%, 57.4%, and 42.7% (combined, male, and female) when using different sex for training.Clinical Relevance-Our preliminary results suggest that sex of patients should be considered to increase the accuracy of pain quantification based on EDA in the presence of cognitive stress.


Asunto(s)
Respuesta Galvánica de la Piel , Dolor , Femenino , Humanos , Aprendizaje Automático , Masculino , Dimensión del Dolor
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6991-6994, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892712

RESUMEN

Electrodermal activity (EDA) has been found to be a highly sensitive, accurate and non-invasive measure of the sympathetic nervous system's activity and has been used to extract biomarkers of various pathophysiological conditions including stress, fatigue, epilepsy, and chronic pain. Recently, various robust signal processing techniques have been developed to obtain more reliable and accurate indices that capture the meaningful characteristics of the EDA using data collected from laboratory-scale devices. However, EDA also has the potential to monitor such physiological conditions in active ambulatory settings, for which the developed tools must be deployed in wearable devices. In this paper, we studied the feasibility of obtaining the highly-sensitive spectral indices of EDA using a wearable device. EDA signals were collected from left hand fingers using a wearable device and a laboratory-scale reference device, while N=18 subjects underwent the Head up Tilt test and the Stroop test to stimulate orthostatic and cognitive stress, respectively. We computed two time-domain indices, the skin conductance level (SCL) and nonspecific skin conductance responses (NS.SCRs), and two spectral indices, the normalized sympathetic components of the EDA (EDASympn), and the time-varying EDA index of sympathetic control (TVSymp). The results showed similar performances for EDASympn and TVSymp indices across both devices. While spectral indices obtained from both devices performed similarly in response to orthostatic and cognitive stress, time-domain exhibited large variation when obtained by the wearable device. Further research is required to develop and refine such devices, as well as the indices used to analyze EDA results.Clinical Relevance- This study proves the feasibility of obtaining spectral indices of EDA using a wearable device, which can be used to develop wearable tools to detect pain, stress, fatigue, between others.


Asunto(s)
Respuesta Galvánica de la Piel , Dispositivos Electrónicos Vestibles , Humanos , Dolor , Procesamiento de Señales Asistido por Computador , Sistema Nervioso Simpático
14.
Sensors (Basel) ; 21(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201268

RESUMEN

The subjectiveness of pain can lead to inaccurate prescribing of pain medication, which can exacerbate drug addiction and overdose. Given that pain is often experienced in patients' homes, there is an urgent need for ambulatory devices that can quantify pain in real-time. We implemented three time- and frequency-domain electrodermal activity (EDA) indices in our smartphone application that collects EDA signals using a wrist-worn device. We then evaluated our computational algorithms using thermal grill data from ten subjects. The thermal grill delivered a level of pain that was calibrated for each subject to be 8 out of 10 on a visual analog scale (VAS). Furthermore, we simulated the real-time processing of the smartphone application using a dataset pre-collected from another group of fifteen subjects who underwent pain stimulation using electrical pulses, which elicited a VAS pain score level 7 out of 10. All EDA features showed significant difference between painless and pain segments, termed for the 5-s segments before and after each pain stimulus. Random forest showed the highest accuracy in detecting pain, 81.5%, with 78.9% sensitivity and 84.2% specificity with leave-one-subject-out cross-validation approach. Our results show the potential of a smartphone application to provide near real-time objective pain detection.


Asunto(s)
Dolor Agudo , Muñeca , Respuesta Galvánica de la Piel , Humanos , Teléfono Inteligente , Articulación de la Muñeca
15.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R186-R196, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34133246

RESUMEN

An objective measure of pain remains an unmet need of people with chronic pain, estimated to be 1/3 of the adult population in the United States. The current gold standard to quantify pain is highly subjective, based upon self-reporting with numerical or visual analog scale (VAS). This subjectivity complicates pain management and exacerbates the epidemic of opioid abuse. We have tested classification and regression machine learning models to objectively estimate pain sensation in healthy subjects using electrodermal activity (EDA). Twenty-three volunteers underwent pain stimulation using thermal grills. Three different "pain stimulation intensities" were induced for each subject, who reported the "pain sensation" right after each stimulus using a VAS (0-10). EDA data were collected throughout the experiment. For machine learning, we computed validated features of EDA based on time-domain decomposition, spectral analysis, and differential features. Models for estimation of pain stimulation intensity and pain sensation achieved maximum macroaveraged geometric mean scores of 69.7% and 69.2%, respectively, when three classes were considered ("No," "Low," and "High"). Regression of levels of stimulation intensity and pain sensation achieved R2 values of 0.357 and 0.47, respectively. Overall, the high variance and inconsistency of VAS scores led to lower performance of pain sensation classification, but regression was better for pain sensation than stimulation intensity. Our results provide that three levels of pain can be quantified with good accuracy and physiological evidence that sympathetic responses recorded by EDA are more correlated to the applied stimuli's intensity than to the pain sensation reported by the subject.


Asunto(s)
Electrodiagnóstico , Aprendizaje Automático , Dimensión del Dolor , Percepción del Dolor , Umbral del Dolor , Dolor/diagnóstico , Procesamiento de Señales Asistido por Computador , Piel/inervación , Sistema Nervioso Simpático/fisiopatología , Adulto , Estudios de Factibilidad , Femenino , Respuesta Galvánica de la Piel , Calor , Humanos , Masculino , Dolor/etiología , Dolor/fisiopatología , Dolor/psicología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Adulto Joven
16.
IEEE Trans Biomed Eng ; 68(10): 3122-3130, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33705307

RESUMEN

OBJECTIVE: Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. METHODS: We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. RESULTS: The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). CONCLUSION: The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study. SIGNIFICANCE: Our approach has the potential for accurate pain quantification using EDA.


Asunto(s)
Respuesta Galvánica de la Piel , Dolor , Nivel de Alerta , Estimulación Eléctrica , Humanos , Dolor/diagnóstico , Máquina de Vectores de Soporte
17.
Atten Percept Psychophys ; 83(1): 525-540, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33205369

RESUMEN

We have performed a direct comparison between facial features obtained from a webcam and vigilance-task performance during prolonged wakefulness. Prolonged wakefulness deteriorates working performance due to changes in cognition, emotion, and by delayed response. Facial features can be potentially collected everywhere using webcams located in the workplace. If this type of device can obtain relevant information to predict performance deterioration, this technology can potentially reduce serious accidents and fatality. We extracted 34 facial indices, including head movements, facial expressions, and perceived facial emotions from 20 participants undergoing the psychomotor vigilance task (PVT) over 25 hours. We studied the correlation between facial indices and the performance indices derived from PVT, and evaluated the feasibility of facial indices as detectors of diminished reaction time during the PVT. Furthermore, we tested the feasibility of classifying performance as normal or impaired using several machine learning algorithms with correlated facial indices. Twenty-one indices were found significantly correlated with PVT indices. Pitch, from the head movement indices, and four perceived facial emotions-anger, surprise, sadness, and disgust-exhibited significant correlations with indices of performance. The eye-related facial expression indices showed especially strong correlation and higher feasibility of facial indices as classifiers. Significantly correlated indices were shown to explain more variance than the other indices for most of the classifiers. The facial indices obtained from a webcam strongly correlate with working performance during 25 hours of prolonged wakefulness.


Asunto(s)
Movimientos de la Cabeza , Vigilia , Expresión Facial , Humanos , Desempeño Psicomotor , Tiempo de Reacción
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4526-4529, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019000

RESUMEN

We developed an objective real-time pain detection method using a smartphone and a wrist-worn wearable device to collect electrodermal activity (EDA) signals. Recently, various researchers have developed pain management applications. However, they rely on subjective self-reported pain scores or the video camera of a smartphone to detect pain, but the latter method's accuracy needs further improvement. In our work, we use a wrist-worn EDA device which transmits data via Bluetooth to a smartphone. A smartphone application was developed to analyze the EDA data so that near real-time processed pain detection information can be displayed. The analysis of EDA is based on estimating time-varying spectral power in the frequency range (0.08-0.24 Hz) associated with the sympathetic nervous system. This time-varying characterization of EDA is termed TVSymp. In this work, we also examined whether removing baseline EDA fluctuations from TVSymp would provide more accurate results. This was carried out by taking the moving average of the EDA response prior to stimulus and subtracting that value from the EDA response post stimulus. This approach is termed modified TVSymp (MTVSymp). Pain stimuli were induced in ten subjects using a thermal grill, which gives intense pain perception without damaging skin tissues. We compared both TVSymp and MTVSymp in detecting pain induced by the thermal grill using machine learning approaches. We found the accuracy of pain detection of TVSymp and MTVSymp to be 80% and 90%, respectively.


Asunto(s)
Teléfono Inteligente , Respuesta Galvánica de la Piel , Humanos , Dolor/diagnóstico , Manejo del Dolor , Percepción del Dolor
19.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R366-R375, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32726157

RESUMEN

We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful "illusion" (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful.


Asunto(s)
Respuesta Galvánica de la Piel/fisiología , Calor , Umbral del Dolor/fisiología , Dolor/fisiopatología , Sensación Térmica/fisiología , Adulto , Frío , Femenino , Voluntarios Sanos , Humanos , Dimensión del Dolor/métodos
20.
Front Artif Intell ; 3: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33733136

RESUMEN

High risk professions, such as pilots, police officers, and TSA agents, require sustained vigilance over long periods of time and/or under conditions of little sleep. This can lead to performance impairment in occupational tasks. Predicting impaired states before performance decrement manifests is critical to prevent costly and damaging mistakes. We hypothesize that machine learning models developed to analyze indices of eye and face tracking technologies can accurately predict impaired states. To test this we trained 12 types of machine learning algorithms using five methods of feature selection with indices of eye and face tracking to predict the performance of individual subjects during a psychomotor vigilance task completed at 2-h intervals during a 25-h sleep deprivation protocol. Our results show that (1) indices of eye and face tracking are sensitive to physiological and behavioral changes concomitant with impairment; (2) methods of feature selection heavily influence classification performance of machine learning algorithms; and (3) machine learning models using indices of eye and face tracking can correctly predict whether an individual's performance is "normal" or "impaired" with an accuracy up to 81.6%. These methods can be used to develop machine learning based systems intended to prevent operational mishaps due to sleep deprivation by predicting operator impairment, using indices of eye and face tracking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...