Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087312

RESUMEN

BACKGROUND: The incorporation of functional food ingredients in chocolate that seek to eliminate, if not completely, most of the added sugar content, as well as the use of alternative chocolate production techniques, have gained popularity in recent years. This study aimed to incorporate red beetroot powder into dark chocolate and investigate the effect of red beetroot powder concentration and processing time in a melanger on the physicochemical properties, sensory profile and consumer acceptability of beetroot dark chocolate. RESULTS: The addition of red beetroot powder increased the moisture content, particle size distribution and hardness of the chocolates, while the opposite was true for processing time with no effect on the colour. Except for taste, which had an average score of 3.2 ± 1.8 on the 7-point hedonic scale, consumers scored all the other sensory attributes of the chocolates above 4.0. Among the chocolates with red beetroot powder, samples with a 15% red beetroot powder addition had a high average overall acceptability score of >5, while the 30% sample scored <4. CONCLUSION: Red beetroot powder can be used to replace sugar in dark chocolate without affecting its physicochemical properties, sensory profile or consumer acceptability. However, the target market should be considered when determining the level of red beetroot powder incorporation in terms of chocolate taste. This research has the potential to improve the overall health-promoting properties of dark chocolate by eliminating added sugar (partially or completely). It would also help to diversify beetroot utilization, allow small-scale processors to venture into chocolate production and expand the small-scale chocolate value chain. © 2024 Society of Chemical Industry.

2.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430843

RESUMEN

Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.


Asunto(s)
Cacao , Chocolate , Polifenoles/farmacología , Teobromina/farmacología
3.
J Food Sci Technol ; 58(10): 3933-3941, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34471317

RESUMEN

Sedimentation of particles in cocoa drink is a technological challenge for the food industry. This study investigates the effect of different stabilizers (alginate, xanthan gum or carrageenan) on the suspension stability of cinnamon-cocoa drink made from 2 types of cocoa powder (natural or alkalized). Rheological and microstructural properties determination was used to examine the stabilization effect mechanism. The cocoa powder characteristic was investigated to study the correlation between cocoa powder properties and suspension stability. The results showed that xanthan gum is the most effective stabilizer to prevent particle sedimentation of the cinnamon-cocoa drink. Xanthan gum formed a network entrapping the particles. It increased the viscosity from 2.47 to 70.44 mPa s at a shear rate of 10/s. The drink formulated with alkalized cocoa powder has a better stability than that formulated with natural cocoa powder. However, at the concentration of 0.1% (w/v), xanthan gum could prevent sedimentation regardless the type of cocoa powder. The addition of xanthan gum up to 0.1% (w/v) had no significant effect on pH and antioxidant properties of the cinnamon-chocolate drink with a minor change in the lightness (L*) parameter. As such, the value of L*, pH, phenolic content and antioxidant activity of the cinnamon-cocoa drinks remained stable at around 22.5 ± 0.9, 7.2 ± 0.1, 0.31 ± 0.5 mg epicatechin equivalent /ml and 0.44 ± 0.3 mg tannic acid equivalent /ml, respectively. This study can be useful for the food industry to define a novel strategy to produce "ready-to-drink" cocoa-based beverage with prolonged suspension stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA