Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 7(10): 11170-11175, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910963

RESUMEN

Glass microspheres have gained significant attention over the years in the field of photonics due to their application in whispering gallery mode (WGM) microresonator platforms. However, the synthesis of glass spheres in the micro regime remains challenging, while it relies mostly on complicated synthetic methods or sol-gel chemistry. Herein, we demonstrate the controlled formation of phosphate glass microspheres by means of a simple, fast, low-temperature, post-glass melting thermal treatment of previously quenched glass. Moreover, we report on the simultaneous formation of silver nanoparticles (AgNPs) on the surface of glass spheres upon the same treatment. The formation of metal nanoparticles onto the glass spheres induces attractive optical and plasmonic properties, believed to be suitable for WGM resonator-based applications, as well as a wide range of optoelectronic, photonic, and sensing applications.

2.
ACS Appl Nano Mater ; 6(14): 13027-13036, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37533541

RESUMEN

Polymer composites based on polycarbonate (PC) and polyether ether ketone (PEEK) filled with single-walled carbon nanotubes (SWCNTs, 0.5-2.0 wt %) were melt-mixed to investigate their suitability for thermoelectric applications. Both types of polymer composites exhibited positive Seebeck coefficients (S), indicative for p-type thermoelectric materials. As an additive to improve the thermoelectric performance, three different ionic liquids (ILs), specifically THTDPCl, BMIMPF6, and OMIMCl, were added with the aim to change the thermoelectric conduction type of the composites from p-type to n-type. It was found that in both composite types, among the three ILs employed, only the phosphonium-based IL THTDPCl was able to activate the p- to n-type switching. Moreover, it is revealed that for the thermoelectric parameters and performance, the SWCNT:lL ratio plays a role. In the selected systems, S-values between 61.3 µV/K (PEEK/0.75 wt % SWCNT) and -37.1 µV/K (PEEK/0.75 wt % SWCNT + 3 wt % THTDPCl) were reached. In order to shed light on the physical origins of the thermoelectric properties, the PC-based composites were studied using ultrafast laser time-resolved transient absorption spectroscopy (TAS). The TAS studies revealed that the introduction of ILs in the developed PC/CNT composites leads to the formation of biexcitons when compared to the IL-free composites. Moreover, no direct correlation between S and exciton lifetimes was found for the IL-containing composites. Instead, the exciton lifetime decreases while the conductivity seems to increase due to the availability of more free-charge carriers in the polymer matrix.

4.
Adv Sci (Weinh) ; 10(6): e2201842, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574469

RESUMEN

Recent advances in atomically thin two dimensional (2D) anisotropic group IVA -VI metal monochalcogenides (MMCs) and their fascinating intrinsic properties and potential applications are hampered due to an ongoing challenge of monolayer isolation. Among the most promising MMCs, tin (II) sulfide (SnS) is an earth-abundant layered material with tunable bandgap and anisotropic physical properties, which render it extraordinary for electronics and optoelectronics. To date, however, the successful isolation of atomically thin SnS single layers at large quantities has been challenging due to the presence of strong interlayer interactions, attributed to the lone-pair electrons of sulfur. Here, a novel liquid phase exfoliation approach is reported, which enables the overcome of such strong interlayer binding energy. Specifically, it demonstrates that the synergistic action of external thermal energy with the ultrasound energy-induced hydrodynamic force in solution gives rise to the systematic isolation of highly crystalline SnS monolayers (1L-SnS). It is shown that the exfoliated 1L-SnS crystals exhibit high carrier mobility and deep-UV spectral photodetection, featuring a fast carrier response time of 400 ms. At the same time, monolayer-based SnS transistor devices fabricated from solution present a high on/off ratio, complemented with a responsivity of 6.7 × 10-3 A W-1 and remarkable stability upon prolonged operation in ambient conditions. This study opens a new avenue for large-scale isolation of highly crystalline SnS and other MMC manolayers for a wide range of applications, including extended area nanoelectronic devices, printed from solution.

5.
Materials (Basel) ; 15(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35591318

RESUMEN

Femtosecond direct laser writing is a well-established and robust technique for the fabrication of photonic structures. Herein, we report on the fabrication of buried waveguides in AgPO3 silver metaphosphate glasses, as well as, on the erase and re-writing of those structures, by means of a single femtosecond laser source. Based on the fabrication procedure, the developed waveguides can be erased and readily re-inscribed upon further femtosecond irradiation under controlled conditions. Namely, for the initial waveguide writing the employed laser irradiation power was 2 J/cm2 with a scanning speed of 5 mm/s and a repetition rate of 200 kHz. Upon enhancing the power to 16 J/cm2 while keeping constant the scanning speed and reducing the repetition rate to 25 kHz, the so formed patterns were readily erased. Then, upon using a laser power of 2 J/cm2 with a scanning speed of 1 mm/s and a repetition rate of 200 kHz the waveguide patterns were re-written inside the glass. Scanning electron microscopy (SEM) images at the cross-section of the processed glasses, combined with spatial Raman analysis revealed that the developed write/erase/re-write cycle, does not cause any structural modification to the phosphate network, rendering the fabrication process feasible for reversible optoelectronic applications. Namely, it is proposed that this non-ablative phenomenon lies on the local relaxation of the glass network caused by the heat deposited upon pulsed laser irradiation. The resulted waveguide patterns Our findings pave the way towards new photonic applications involving infinite cycles of write/erase/re-write processes without the need of intermediate steps of typical thermal annealing treatments.

6.
Nat Nanotechnol ; 17(5): 485-492, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35347273

RESUMEN

Reduction of nitroaromatics to the corresponding amines is a key process in the fine and bulk chemicals industry to produce polymers, pharmaceuticals, agrochemicals and dyes. However, their effective and selective reduction requires high temperatures and pressurized hydrogen and involves noble metal-based catalysts. Here we report on an earth-abundant, plasmonic nano-photocatalyst, with an excellent reaction rate towards the selective hydrogenation of nitroaromatics. With solar light as the only energy input, the chalcopyrite catalyst operates through the combined action of hot holes and photothermal effects. Ultrafast laser transient absorption and light-induced electron paramagnetic resonance spectroscopies have unveiled the energy matching of the hot holes in the valence band of the catalyst with the frontier orbitals of the hydrogen and electron donor, via a transient coordination intermediate. Consequently, the reusable and sustainable copper-iron-sulfide (CuFeS2) catalyst delivers previously unattainable turnover frequencies, even in large-scale reactions, while the cost-normalized production rate stands an order of magnitude above the state of the art.

7.
Sci Rep ; 10(1): 15697, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973224

RESUMEN

Tailoring the photoluminescence (PL) properties in two-dimensional (2D) molybdenum disulfide (MoS2) crystals using external factors is critical for its use in valleytronic, nanophotonic and optoelectronic applications. Although significant effort has been devoted towards enhancing or manipulating the excitonic emission in MoS2 monolayers, the excitonic emission in few-layers MoS2 has been largely unexplored. Here, we put forward a novel nano-heterojunction system, prepared with a non-lithographic process, to enhance and control such emission. It is based on the incorporation of few-layers MoS2 into a plasmonic silver metaphosphate glass (AgPO3) matrix. It is shown that, apart from the enhancement of the emission of both A- and B-excitons, the B-excitonic emission dominates the PL intensity. In particular, we observe an almost six-fold enhancement of the B-exciton emission, compared to control MoS2 samples. This enhanced PL at room temperature is attributed to an enhanced exciton-plasmon coupling and it is supported by ultrafast time-resolved spectroscopy that reveals plasmon-enhanced electron transfer that takes place in Ag nanoparticles-MoS2 nanoheterojunctions. Our results provide a great avenue to tailor the emission properties of few-layers MoS2, which could find application in emerging valleytronic devices working with B excitons.

8.
Nanoscale ; 12(25): 13697-13707, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32573581

RESUMEN

Owing to their exceptional optoelectronic properties, all-inorganic lead halide perovskites offer enormous potential for next generation photonic, light-emitting, and optoelectronic devices. However, their usage is significantly limited by their poor stability upon moisture exposure and lead toxicity issues. Moreover, many of the aforementioned applications rely on the development of confined perovskite patterns of various shapes and periodicities. Here we report a simple and low-temperature method enabling the controlled incorporation of photoluminescent all-inorganic metal halide PNCs into a silver phosphate glass (AgPO3) matrix which is transparent in most of the visible range. The developed fabrication protocol is based on a simple melting encapsulation process in which pre-synthesized perovskite crystals are inserted in the glass matrix, following the initial glass quenching. Using this novel approach, two types of composite perovskite glasses are prepared, one that hosts perovskite isles and the second in which a thin perovskite layer is embedded beneath the glass surface. Both types of composite glasses exhibit remarkable photoluminescence stability when compared to the ambient air-exposed perovskite crystals. More importantly, by means of a simple and fast cw-laser processing technique, we demonstrate the development of encapsulated dotted perovskite micropatterns within the composite perovskite glass. The ability of the proposed system to resolve stability and lead toxicity issues, coupled with the facile formation of highly luminescent perovskite patterns pave the way towards the broad exploitation of perovskite crystals in photonic applications.

9.
Nanoscale Adv ; 1(8): 3107-3118, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133594

RESUMEN

Planar inverted lead halide photovoltaics demonstrate remarkable photoconversion properties when employing poly(triarylamine) (PTAA) as a hole transporting layer. Herein, we elucidate the effect of ambient ultraviolet (UV) degradation on the structural and operational stability of the PTAA hole transporter through a series of rigorous optoelectrical characterization protocols. Due attention was given to the interplay between the polymer and perovskite absorber, both within the framework of a bilayer structure and fully assembled solar cells. The obtained results imply that UV degradation exerts a major influence on the structural integrity of PTAA, rather than on the interface with the perovskite light harvester. Moreover, UV exposure induced more adverse effects on tested samples than environmental humidity and oxygen, contributing more to the overall reduction of charge extraction properties of PTAA, as well as increased defect population upon prolonged UV exposure.

10.
ACS Appl Mater Interfaces ; 10(12): 10236-10245, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29508996

RESUMEN

We report on the photovoltaic parameters, photophysical properties, optoelectronic properties, self-assembly, and morphology variations in a series of high-performance donor-acceptor (D-A) π-conjugated polymers based on indacenodithiophene and quinoxaline moieties as a function of the number-average molecular weight ([Formula: see text]), the nature of aryl substituents, and the enlargement of the polymer backbone. One of the most important outcome is that from the three optimization approaches followed to tune the chemical structure toward enhanced photovoltaic performance in bulk heterojunction solar cell devices with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester as the electron acceptor, the choice of the aryl substituent is the most efficient rational design strategy. Incorporation of thienyl rings as substituents versus phenyl rings accelerates the electron-hole extraction process to the respective electrode, despite the slightly lower recombination lifetime and, thus, improves the electrical performance of the device. Single-junction solar cells based on ThIDT-TQxT feature a maximum power-conversion efficiency of 7.26%. This study provides significant insights toward understanding of the structure-properties-performance relationship for D-A π-conjugated polymers in solid state, which provide helpful inputs for the design of next-generation polymeric semiconductors for organic solar cells with enhanced performance.

11.
Opt Lett ; 43(4): 671-674, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29444050

RESUMEN

We demonstrate, for the first time, an inscription and wet dissolution study of Bragg gratings in a bioresorbable calcium-phosphate glass optical fiber. Bragg gratings, with average refractive index changes of 5.8×10-4, were inscribed using 193 nm excimer laser radiation. Results on the dissolution of the irradiated fiber in simulated physiological conditions are presented after immersing a tilted Bragg grating in a phosphate buffered saline solution for 56 h; selective chemical etching effects are also reported. The investigations performed pave the way toward the use of such phosphate glass fiber Bragg gratings for the development of soluble photonic sensing probes for the efficient in vivo monitoring of vital mechanical or chemical parameters.


Asunto(s)
Fosfatos de Calcio/química , Fosfatos de Calcio/metabolismo , Fibras Ópticas , Fenómenos Ópticos , Vidrio/química
12.
ACS Appl Mater Interfaces ; 9(50): 43910-43919, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29188719

RESUMEN

CH3NH3PbI3 perovskite thin films have been deposited on glass/indium tin oxide/hole transport layer (HTL) substrates, utilizing two different materials as the HTLs. In the first configuration, the super hydrophilic polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), known as PEDOT:PSS, was employed as the HTL material, whereas in the second case, the nonwetting poly(triarylamine) semiconductor polymer, known as PTAA, was used. It was found that when PTAA is used as the HTL material, the averaged power conversion efficiency (PCE) of the perovskite solar cells (PSCs) remarkably increases from 12.60 to 15.67%. To explore the mechanism behind this enhancement, the aforementioned perovskite/HTL arrangements were investigated by time-resolved transient absorption spectroscopy (TAS) performed under inert conditions. By means of TAS, the charge transfer, carrier trapping, and hole injection dynamics from the photoexcited perovskite layers to the HTL can be directly monitored via the characteristic bleaching profile of the perovskite at ∼750 nm. TAS studies revealed faster relaxation times and decay dynamics when the PTAA polymer is employed, which potentially account for the enhanced PCE observed. The TAS results are correlated with the structure and crystalline quality of the corresponding perovskite films, investigated by scanning electron microscopy, X-ray diffraction, atomic force microscopy, micro-photoluminescence, and transmittance spectroscopy. It is concluded that TAS is a benchmark technique for the understanding of the carrier transport mechanisms in PSCs and constitutes a figure-of-merit tool toward their efficiency improvement.

13.
Opt Lett ; 41(10): 2185-8, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27176958

RESUMEN

In this Letter, we demonstrate the fabrication and characterization of a robust and functional whispering gallery mode (WGM) resonating system based on a silver iodide phosphate glass microsphere melted on an optical fiber taper. The fabrication process is presented, together with spectral characterization of the device. The effect of the thermal annealing of the soft glass resonator on the whispering gallery modes' excitation and Q-factor is shown and discussed.

14.
Opt Express ; 23(24): 31496-509, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26698774

RESUMEN

A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

15.
Opt Lett ; 39(12): 3374-7, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978489

RESUMEN

We report on the application of an external electric field and its tuning effect in the guiding properties of a composite AgPO3/silica photonic bandgap fiber. The application of an electric field leads to the poling of the soft glass inclusion, resulting in the formation of a silver-induced plasmonic band, predominantly affecting the short wavelength guiding regimes while inducing polarization dependent losses. These spectral effects are attributed to the formation of silver nanoparticles within the AgPO3 glass matrix, driven by thermal poling.

16.
Materials (Basel) ; 7(8): 5735-5745, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28788157

RESUMEN

Silver iodide metaphosphate glasses of the xAgI + (1-x)AgPO3 family are embedded inside the air capillaries of a commercial silica photonic crystal fiber (PCF) by means of vacuum-assisted infiltration technique. In this paper, we report on tuning the photonic bandgap (PBG) guidance characteristics of the fabricated all-glass photonic bandgap fibers, by varying the composition of the fast-ion-conducting phosphate glass infiltration medium. Doping AgPO3 metaphosphate glass with AgI significantly alters the PBG guidance patterns in the examined range between 350 and 1750 nm, as it leads to the introduction of numerous additional transmission stop-bands, while affecting scattering dependant losses. The effect of phosphate glass cooling method during sample fabrication on the transmission behavior of the xAgI + (1-x)AgPO3/PCFs is also considered.

17.
Opt Lett ; 37(13): 2499-501, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22743434

RESUMEN

Photonic bandgap (PBG) guidance is observed in a solid core photonic crystal fiber (PCF) consisting of silver metaphosphate (AgPO(3)) glass embedded into a silica cladding, realized by vacuum-assisted infiltration of the molten glass into the hollow channels of a commercial silica PCF. Morphologic analysis of the cladding microstructure by optical and scanning electron microscopy reveals the formation of highly homogeneous glass strands along the PCF length. The characteristic transmission spectrum of the fiber shows PBG guidance in the range between 350 and 1650 nm. The exposure of the cladding glass matrix, using 355 nm, 150 ps laser irradiation, allows photo-induced enhancement of the transmission-to-stop-band extinction ratio by ∼60 dB/cm and bandwidth tuning. Numerical calculations of the transmission pattern of the fabricated AgPO(3)/silica bandgap fiber are in good agreement with experiments.

18.
Dalton Trans ; (19): 3067-70, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15452632

RESUMEN

Variable-pressure, variable-temperature (VPVT) measurements of ionic conductivity in typical inorganic (sodium aluminoborate and lithium-sodium phosphate) glasses provide information concerning two independent activation parameters: the activation energy (E(A) = - R d ln sigma T/d(1/T)) and the activation volume (V(A) = - RT d ln sigma/dP). In single-cation glasses there is no simple link between E(A) and V(A). The strong increase in E(A) seen with decreasing alkali content is not paralleled by an increase in V(A). However, in mixed cation glasses, maxima are observed in both E(A) and V(A). To account for these observations, a new model is being developed where ion transport is limited by a shortage of available volume. In this model, the measured V(A) values represent the volumes of opened up 'target sites', the larger values observed in mixed-cation glasses providing evidence for the coupled motion of unlike ions. The extent of this pairwise coupling increases with increasing temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA