Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cancer Res ; 82(19): 3532-3548, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35950917

RESUMEN

Polo-like kinase 1 (Plk1) plays an important role in cell-cycle regulation. Recent work has suggested that Plk1 could be a biomarker of gemcitabine response in pancreatic ductal adenocarcinoma (PDAC). Although targeting Plk1 to treat PDAC has been attempted in clinical trials, the results were not promising, and the mechanisms of resistance to Plk1 inhibition is poorly understood. In addition, the role of Plk1 in PDAC progression requires further elucidation. Here, we showed that Plk1 was associated with poor outcomes in patients with PDAC. In an inducible transgenic mouse line with specific expression of Plk1 in the pancreas, Plk1 overexpression significantly inhibited caerulein-induced acute pancreatitis and delayed development of acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Bioinformatics analyses identified the regulatory networks in which Plk1 is involved in PDAC disease progression, including multiple inflammation-related pathways. Unexpectedly, inhibition or depletion of Plk1 resulted in upregulation of PD-L1 via activation of the NF-κB pathway. Mechanistically, Plk1-mediated phosphorylation of RB at S758 inhibited the translocation of NF-κB to nucleus, inactivating the pathway. Inhibition of Plk1 sensitized PDAC to immune checkpoint blockade therapy through activation of an antitumor immune response. Together, Plk1 suppresses PDAC progression and inhibits NF-κB activity, and targeting Plk1 can potentiate the efficacy of immunotherapy in PDAC. SIGNIFICANCE: Inhibition of Plk1 induces upregulation of PD-L1 expression in pancreatic ductal adenocarcinoma, stimulating antitumor immunity and sensitizing tumors to immunotherapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Enfermedad Aguda , Animales , Antígeno B7-H1 , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular , Ceruletida/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , FN-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Quinasa Tipo Polo 1 , Neoplasias Pancreáticas
2.
Front Immunol ; 13: 859598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618345

RESUMEN

Antibody secretion by plasma cells provides acute and long-term protection against pathogens. The high secretion potential of plasma cells depends on the unfolded protein response, which is controlled by the transcription factor Xbp1. Here, we analyzed the Xbp1-dependent gene expression program of plasma cells and identified Bhlha15 (Mist1) as the most strongly activated Xbp1 target gene. As Mist1 plays an important role in other secretory cell types, we analyzed in detail the phenotype of Mist1-deficient plasma cells in Cd23-Cre Bhlha15 fl/fl mice under steady-state condition or upon NP-KLH immunization. Under both conditions, Mist1-deficient plasma cells were 1.4-fold reduced in number and exhibited increased IgM production and antibody secretion compared to control plasma cells. At the molecular level, Mist1 regulated a largely different set of target genes compared with Xbp1. Notably, expression of the Blimp1 protein, which is known to activate immunoglobulin gene expression and to contribute to antibody secretion, was 1.3-fold upregulated in Mist1-deficient plasma cells, which led to a moderate downregulation of most Blimp1-repressed target genes in the absence of Mist1. Importantly, a 2-fold reduction of Blimp1 (Prdm1) expression was sufficient to restore the cell number and antibody expression of plasma cells in Prdm1 Gfp/+ Cd23-Cre Bhlha15 fl/fl mice to the same level seen in control mice. Together, these data indicate that Mist1 restricts antibody secretion by restraining Blimp1 expression, which likely contributes to the viability of plasma cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Plasmáticas , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Animales , Ratones , Anticuerpos/metabolismo , Regulación de la Expresión Génica , Células Plasmáticas/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
Lab Chip ; 21(19): 3675-3685, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34581719

RESUMEN

A pancreatic acinus is a functional unit of the exocrine pancreas producing digest enzymes. Its pathobiology is crucial to pancreatic diseases including pancreatitis and pancreatic cancer, which can initiate from pancreatic acini. However, research on pancreatic acini has been significantly hampered due to the difficulty of culturing normal acinar cells in vitro. In this study, an in vitro model of the normal acinus, named pancreatic acinus-on-chip (PAC), is developed using reprogrammed pancreatic cancer cells. The developed model is a microfluidic platform with an epithelial duct and acinar sac geometry microfabricated by a newly developed two-step controlled "viscous-fingering" technique. In this model, human pancreatic cancer cells, Panc-1, reprogrammed to revert to the normal state upon induction of PTF1a gene expression, are cultured. Bioinformatic analyses suggest that, upon induced PTF1a expression, Panc-1 cells transition into a more normal and differentiated acinar phenotype. The microanatomy and exocrine functions of the model are characterized to confirm the normal acinus phenotypes. The developed model provides a new and reliable testbed to study the initiation and progression of pancreatic cancers.


Asunto(s)
Páncreas Exocrino , Neoplasias Pancreáticas , Células Acinares , Humanos , Páncreas , Neoplasias Pancreáticas/genética , Factores de Transcripción
4.
Biotechnol J ; 16(4): e2000308, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33369118

RESUMEN

Most biopharmaceuticals produced today are generated using Chinese hamster ovary (CHO) cells, therefore significant attention is focused on methods to improve CHO cell productivity and product quality. The discovery of gene-editing tools, such as CRISPR/Cas9, offers new opportunities to improve CHO cell bioproduction through cell line engineering. Recently an additional CRISPR-associated protein, Cas12a (Cpf1), was shown to be effective for gene editing in eukaryotic cells, including CHO. In this study, we demonstrate the successful application of CRISPR/Cas12a for the generation of clonally derived CHO knockout (KO) cell lines with improved product quality attributes. While we found Cas12a efficiency to be highly dependent on the targeting RNA used, we were able to generate CHO KO cell lines using small screens of only 96-320 clonally derived cell lines. Additionally, we present a novel bulk culture analysis approach that can be used to quickly assess CRISPR RNA efficiency and determine ideal screen sizes for generating genetic KO cell lines. Most critically, we find that Cas12a can be directly integrated into the cell line generation process through cotransfection with no negative impact on titer or screen size. Overall, our results show CRISPR/Cas12a to be an efficient and effective CHO genome editing tool.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Animales , Células CHO , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Cricetinae , Cricetulus , Edición Génica
5.
J Thromb Haemost ; 19(1): 161-172, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064371

RESUMEN

Essentials Elimination of PDAC tumor cell PAR1 increased cytotoxic T cells and reduced tumor macrophages. PAR1KO PDAC cells are preferentially eliminated from growing tumors. Thrombin-PAR1 signaling in PDAC tumor cells drives an immunosuppressive gene signature. Csf2 and Ptgs2 are thrombin-PAR1 downstream immune suppressor genes in PDAC tumor cells. ABSTRACT: Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prothrombotic state and a lack of host antitumor immune responsiveness. Linking these two key features, we previously demonstrated that tumor-derived coagulation activity promotes immune evasion. Specifically, thrombin-protease-activated receptor-1 (PAR1) signaling in mouse PDAC cells drives tumor growth by evading cytotoxic CD8a+ cells. Methods Syngeneic mixed cell tumor growth, transcriptional analyses, and functional tests of immunosuppressive response genes were used to identify cellular and molecular immune evasion mechanisms mediated by thrombin-PAR-1 signaling in mouse PDAC tumor cells. Results Elimination of tumor cell PAR1 in syngeneic graft studies increased cytotoxic T lymphocyte (CTL) infiltration and decreased tumor-associated macrophages in the tumor microenvironment. Co-injection of PAR1-expressing and PAR1-knockout (PAR-1KO ) tumor cells into immunocompetent mice resulted in preferential elimination of PAR-1KO cells from developing tumors, suggesting that PAR1-dependent immune evasion is not reliant on CTL exclusion. Transcriptomics analyses revealed no PAR1-dependent changes in the expression of immune checkpoint proteins and no difference in major histocompatibility complex-I cell surface expression. Importantly, thrombin-PAR1 signaling in PDAC cells upregulated genes linked to immunosuppression, including Csf2 and Ptgs2. Functional analyses confirmed that both Csf2 and Ptgs2 are critical for PDAC syngeneic graft tumor growth and overexpression of each factor partially restored tumor growth of PAR1KO cells in immunocompetent mice. Conclusions Our results provide novel insight into the mechanisms of a previously unrecognized pathway coupling coagulation to PDAC immune evasion by identifying PAR1-dependent changes in the tumor microenvironment, a PAR1-driven immunosuppressive gene signature, and Csf2 and Ptgs2 as critical PAR1 downstream targets.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Ratones , Neoplasias Pancreáticas/genética , Receptor PAR-1/genética , Transducción de Señal , Trombina/metabolismo , Microambiente Tumoral
6.
Lab Chip ; 20(20): 3720-3732, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909573

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a complex disease with significant intra-tumoral heterogeneity (ITH). Currently, no reliable PDAC tumor model is available that can present ITH profiles in a controlled manner. We develop an in vitro microfluidic tumor model mimicking the heterogeneous accumulation of key driver mutations of human PDAC using cancer cells derived from genetically engineered mouse models. These murine pancreatic cancer cell lines have KPC (Kras and Trp53 mutations) and KIC genotypes (Kras mutation and Cdkn2a deletion). Also, the KIC genotypes have two distinct phenotypes - mesenchymal or epithelial. The tumor model mimics the ITH of human PDAC to study the effects of ITH on the gemcitabine response. The results show gemcitabine resistance induced by ITH. Remarkably, it shows that cancer cell-cell interactions induce the gemcitabine resistance potentially through epithelial-mesenchymal-transition. The tumor model can provide a useful testbed to study interaction mechanisms between heterogeneous cancer cell subpopulations.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Ratones , Mutación , Páncreas , Neoplasias Pancreáticas/genética
7.
PLoS One ; 15(6): e0234012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32544183

RESUMEN

Understanding progression of breast cancers to invasive ductal carcinoma (IDC) can significantly improve breast cancer treatments. However, it is still difficult to identify genetic signatures and the role of tumor microenvironment to distinguish pathological stages of pre-invasive lesion and IDC. Presence of multiple subtypes of breast cancers makes the assessment more challenging. In this study, an in-vitro microfluidic assay was developed to quantitatively assess the subtype-specific invasion potential of breast cancers. The developed assay is a microfluidic platform in which a ductal structure of epithelial cancer cells is surrounded with a three-dimensional (3D) collagen matrix. In the developed platform, two triple negative cancer subtypes (MDA-MB-231 and SUM-159PT) invaded into the surrounding matrix but the luminal A subtype, MCF-7, did not. Among invasive subtypes, SUM-159PT cells showed significantly higher invasion and degradation of the surrounding matrix than MDA-MB-231. Interestingly, the cells cultured on the platform expressed higher levels of CD24 than in their conventional 2D cultures. This microfluidic platform may be a useful tool to characterize and predict invasive potential of breast cancer subtypes or patient-derived cells.


Asunto(s)
Carcinoma Ductal de Mama/patología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Antígeno CD24/metabolismo , Carcinoma Ductal de Mama/clasificación , Carcinoma Ductal de Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Microfluídica/métodos , Invasividad Neoplásica , Estadificación de Neoplasias , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/genética
8.
Small ; 16(10): e1905500, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31997571

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a complex, heterogeneous, and genetically unstable disease. Its tumor microenvironment (TME) is complicated by heterogeneous cancer cell populations and strong desmoplastic stroma. This complex and heterogeneous environment makes it challenging to discover and validate unique therapeutic targets. Reliable and relevant in vitro PDAC tumor models can significantly advance the understanding of the PDAC TME and may enable the discovery and validation of novel drug targets. In this study, an engineered tumor model is developed to mimic the PDAC TME. This biomimetic model, named ductal tumor-microenvironment-on-chip (dT-MOC), permits analysis and experimentation on the epithelial-mesenchymal transition (EMT) and local invasion with intratumoral heterogeneity. This dT-MOC is a microfluidic platform where a duct of murine genetically engineered pancreatic cancer cells is embedded within a collagen matrix. The cancer cells used carry two of the three mutations of KRAS, CDKN2A, and TP53, which are key driver mutations of human PDAC. The intratumoral heterogeneity is mimicked by co-culturing these cancer cells. Using the dT-MOC model, heterogeneous invasion characteristics, and response to transforming growth factor-beta1 are studied. A mechanism of EMT and local invasion caused by the interaction between heterogeneous cancer cell populations is proposed.


Asunto(s)
Biomimética , Carcinoma Ductal Pancreático , Invasividad Neoplásica , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/fisiopatología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Humanos , Ratones , Microfluídica , Modelos Biológicos , Invasividad Neoplásica/fisiopatología , Neoplasias Pancreáticas/fisiopatología , Microambiente Tumoral
9.
Cancer Res ; 79(13): 3417-3430, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31048498

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with robust activity of the coagulation system. To determine mechanisms by which clotting factors influence PDAC tumor progression, we generated and characterized C57Bl/6-derived KPC (KRasG12D, TRP53R172H ) cell lines. Tissue factor (TF) and protease-activated receptor-1 (PAR-1) were highly expressed in primary KPC pancreatic lesions and KPC cell lines similar to expression profiles observed in biopsies of patients with PDAC. In allograft studies, tumor growth and metastatic potential were significantly diminished by depletion of TF or Par-1 in cancer cells or by genetic or pharmacologic reduction of the coagulation zymogen prothrombin in mice. Notably, PAR-1-deleted KPC cells (KPC-Par-1KO) failed to generate sizable tumors, a phenotype completely rescued by restoration of Par-1 expression. Expression profiling of KPC and KPC-Par-1KO cells indicated that thrombin-PAR-1 signaling significantly altered immune regulation pathways. Accordingly, KPC-Par-1KO cells failed to form tumors in immune-competent mice but displayed robust tumor growth comparable to that observed with control KPC cells in immune-compromised NSG mice. Immune cell depletion studies indicated that CD8 T cells, but not CD4 cells or natural killer cells, mediated elimination of KPC-Par-1KO tumor cells in C57Bl/6 mice. These results demonstrate that PDAC is driven by activation of the coagulation system through tumor cell-derived TF, circulating prothrombin, and tumor cell-derived PAR-1 and further indicate that one key mechanism of thrombin/PAR-1-mediated tumor growth is suppression of antitumor immunity in the tumor microenvironment. SIGNIFICANCE: The tissue factor-thrombin-PAR-1 signaling axis in tumor cells promotes PDAC growth and disease progression with one key mechanism being suppression of antitumor immunity in the microenvironment.


Asunto(s)
Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Evasión Inmune/inmunología , Neoplasias Pancreáticas/patología , Receptor PAR-1/fisiología , Trombina/metabolismo , Microambiente Tumoral/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/metabolismo , Animales , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Tromboplastina/metabolismo , Células Tumorales Cultivadas
10.
J Med Chem ; 62(5): 2651-2665, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30776234

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, incurable cancer with a 20% 1 year survival rate. While standard-of-care therapy can prolong life in a small fraction of cases, PDAC is inherently resistant to current treatments, and novel therapies are urgently required. Histone deacetylase (HDAC) inhibitors are effective in killing pancreatic cancer cells in in vitro PDAC studies, and although there are a few clinical studies investigating combination therapy including HDAC inhibitors, no HDAC drug or combination therapy with an HDAC drug has been approved for the treatment of PDAC. We developed an inhibitor of HDACs, AES-135, that exhibits nanomolar inhibitory activity against HDAC3, HDAC6, and HDAC11 in biochemical assays. In a three-dimensional coculture model, AES-135 kills low-passage patient-derived tumor spheroids selectively over surrounding cancer-associated fibroblasts and has excellent pharmacokinetic properties in vivo. In an orthotopic murine model of pancreatic cancer, AES-135 prolongs survival significantly, therefore representing a candidate for further preclinical testing.


Asunto(s)
Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Hidrocarburos Fluorados/farmacología , Ácidos Hidroxámicos/química , Neoplasias Pancreáticas/tratamiento farmacológico , Sulfonamidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacocinética , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/farmacocinética , Hidrocarburos Fluorados/uso terapéutico , Ratones , Neoplasias Pancreáticas/patología , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapéutico
11.
Life Sci Alliance ; 1(5): e201800190, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30456390

RESUMEN

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3ß (GSKß), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

12.
Eur J Immunol ; 48(9): 1492-1505, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29898247

RESUMEN

BATF functions in T cells and B cells to control the host response to antigen and promote the production of class switched immunoglobulins. In this study, we demonstrate that BATF expression increases rapidly, and transiently, following B cell stimulation and use an inducible murine model of BATF deletion to show that this induction is necessary, and sufficient, for immunoglobulin (Ig) class switch recombination (CSR). We examine two genes (Nfil3 and miR155gh) that are positively regulated, and one gene (Wnt10a) that is negatively regulated by BATF during CSR. These genes play essential roles in CSR and each impacts the expression and/or function of the others. Our observations allow these targets of BATF regulation to be positioned in a network upstream of the activation of germline transcripts (GLT) from the IgH locus and of transcriptional activation of Aicda - the gene encoding the enzyme directing Ig gene rearrangements. This work extends the knowledge of the molecular control of CSR and, importantly, positions the induction and function of BATF as an early event in this process.


Asunto(s)
Linfocitos B/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas Wnt/biosíntesis , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Cultivadas , Citidina Desaminasa/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Activación Transcripcional/genética
13.
Mol Oncol ; 12(7): 1104-1124, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719936

RESUMEN

Pancreatic acinar cells synthesize, package, and secrete digestive enzymes into the duodenum to aid in nutrient absorption and meet metabolic demands. When exposed to cellular stresses and insults, acinar cells undergo a dedifferentiation process termed acinar-ductal metaplasia (ADM). ADM lesions with oncogenic mutations eventually give rise to pancreatic ductal adenocarcinoma (PDAC). In healthy pancreata, the basic helix-loop-helix (bHLH) factors MIST1 and PTF1a coordinate an acinar-specific transcription network that maintains the highly developed differentiation status of the cells, protecting the pancreas from undergoing a transformative process. However, when MIST1 and PTF1a gene expression is silenced, cells are more prone to progress to PDAC. In this study, we tested whether induced MIST1 or PTF1a expression in PDAC cells could (i) re-establish the transcriptional program of differentiated acinar cells and (ii) simultaneously reduce tumor cell properties. As predicted, PTF1a induced gene expression of digestive enzymes and acinar-specific transcription factors, while MIST1 induced gene expression of vesicle trafficking molecules as well as activation of unfolded protein response components, all of which are essential to handle the high protein production load that is characteristic of acinar cells. Importantly, induction of PTF1a in PDAC also influenced cancer-associated properties, leading to a decrease in cell proliferation, cancer stem cell numbers, and repression of key ATP-binding cassette efflux transporters resulting in heightened sensitivity to gemcitabine. Thus, activation of pancreatic bHLH transcription factors rescues the acinar gene program and decreases tumorigenic properties in pancreatic cancer cells, offering unique opportunities to develop novel therapeutic intervention strategies for this deadly disease.


Asunto(s)
Células Acinares/patología , Adenocarcinoma/genética , Carcinogénesis/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Células Acinares/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/uso terapéutico , Redes Reguladoras de Genes , Silenciador del Gen , Sitios Genéticos , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratas , Gemcitabina
14.
Genes Dev ; 31(2): 154-171, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174210

RESUMEN

We hypothesized that basic helix-loop-helix (bHLH) MIST1 (BHLHA15) is a "scaling factor" that universally establishes secretory morphology in cells that perform regulated secretion. Here, we show that targeted deletion of MIST1 caused dismantling of the secretory apparatus of diverse exocrine cells. Parietal cells (PCs), whose function is to pump acid into the stomach, normally lack MIST1 and do not perform regulated secretion. Forced expression of MIST1 in PCs caused them to expand their apical cytoplasm, rearrange mitochondrial/lysosome trafficking, and generate large secretory granules. Mist1 induced a cohort of genes regulated by MIST1 in multiple organs but did not affect PC function. MIST1 bound CATATG/CAGCTG E boxes in the first intron of genes that regulate autophagosome/lysosomal degradation, mitochondrial trafficking, and amino acid metabolism. Similar alterations in cell architecture and gene expression were also caused by ectopically inducing MIST1 in vivo in hepatocytes. Thus, MIST1 is a scaling factor necessary and sufficient by itself to induce and maintain secretory cell architecture. Our results indicate that, whereas mature cell types in each organ may have unique developmental origins, cells performing similar physiological functions throughout the body share similar transcription factor-mediated architectural "blueprints."


Asunto(s)
Regulación de la Expresión Génica/genética , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Células Parietales Gástricas/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Vías Secretoras/genética , Células Acinares/citología , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Línea Celular , Expresión Génica Ectópica/efectos de los fármacos , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Células Parietales Gástricas/efectos de los fármacos , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/ultraestructura , Tamoxifeno/farmacología
15.
Oncotarget ; 8(67): 111012-111025, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29340033

RESUMEN

Mist1 was recently shown to identify a discrete population of stem cells within the isthmus of the oxyntic gland within the gastric corpus. Chief cells at the base of the gastric corpus also express Mist1. The relevance of Mist1 expression as a marker of specific cell populations within the antral glands of the distal stomach, however, is unknown. Using Mist1-CreERT mice, we revealed that Mist1+ antral cells, distinct from the Mist1+ population in the corpus, comprise long-lived progenitors that reside within the antral isthmus above Lgr5+ or CCK2R+ cells. Mist1+ antral progenitors can serve as an origin of antral tumors induced by loss of Apc or MNU treatment. Mist1+ antral progenitors, as well as other antral stem/progenitor population, express Cxcr4, and are located in close proximity to Cxcl12 (the Cxcr4 ligand)-expressing endothelium. During antral carcinogenesis, there is an expansion of Cxcr4+ epithelial cells as well as the Cxcl12+ perivascular niche. Deletion of Cxcl12 in endothelial cells or pharmacological blockade of Cxcr4 inhibits antral tumor growth. Cxcl12/Cxcr4 signaling may be a potential therapeutic target.

16.
Neoplasia ; 18(9): 541-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27659014

RESUMEN

Preclinical studies have suggested that the pancreatic tumor microenvironment both inhibits and promotes tumor development and growth. Here we establish the role of stromal fibroblasts during acinar-to-ductal metaplasia (ADM), an initiating event in pancreatic cancer formation. The transcription factor V-Ets avian erythroblastosis virus E26 oncogene homolog 2 (ETS2) was elevated in smooth muscle actin-positive fibroblasts in the stroma of pancreatic ductal adenocarcinoma (PDAC) patient tissue samples relative to normal pancreatic controls. LSL-Kras(G12D/+); LSL-Trp53(R172H/+); Pdx-1-Cre (KPC) mice showed that ETS2 expression initially increased in fibroblasts during ADM and remained elevated through progression to PDAC. Conditional ablation of Ets-2 in pancreatic fibroblasts in a Kras(G12D)-driven mouse ADM model decreased the amount of ADM events. ADMs from fibroblast Ets-2-deleted animals had reduced epithelial cell proliferation and increased apoptosis. Surprisingly, fibroblast Ets-2 deletion significantly altered immune cell infiltration into the stroma, with an increased CD8+ T-cell population, and decreased presence of regulatory T cells (Tregs), myeloid-derived suppressor cells, and mature macrophages. The mechanism involved ETS2-dependent chemokine ligand production in fibroblasts. ETS2 directly bound to regulatory sequences for Ccl3, Ccl4, Cxcl4, Cxcl5, and Cxcl10, a group of chemokines that act as potent mediators of immune cell recruitment. These results suggest an unappreciated role for ETS2 in fibroblasts in establishing an immune-suppressive microenvironment in response to oncogenic Kras(G12D) signaling during the initial stages of tumor development.


Asunto(s)
Células Acinares/metabolismo , Transformación Celular Neoplásica/metabolismo , Quimiocinas/biosíntesis , Quimiotaxis de Leucocito , Conductos Pancreáticos/metabolismo , Proteína Proto-Oncogénica c-ets-2/metabolismo , Células del Estroma/metabolismo , Células Acinares/patología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Quimiotaxis de Leucocito/inmunología , Colágeno/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Expresión Génica , Humanos , Inmunohistoquímica , Metaplasia , Ratones , Ratones Noqueados , Conductos Pancreáticos/inmunología , Conductos Pancreáticos/patología , Fenotipo , Proteína Proto-Oncogénica c-ets-2/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
17.
Genes Dev ; 30(17): 1943-55, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27633013

RESUMEN

The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a Kras(G12D) mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo Additionally, Smo-deleted fibroblasts stimulated the growth of Kras(G12D)/Tp53(R172H) pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating Kras(G12D)-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.


Asunto(s)
Carcinoma Ductal Pancreático , Metaplasia/genética , Metaplasia/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular/genética , Células Cultivadas , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Fibroblastos/citología , Fibroblastos/patología , Eliminación de Gen , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Páncreas/patología , Transducción de Señal/genética , Factor de Crecimiento Transformador alfa/metabolismo , Células Tumorales Cultivadas , Proteína Gli2 con Dedos de Zinc
18.
Mol Cell Biol ; 36(23): 2931-2944, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27644325

RESUMEN

Transcriptional networks that govern secretory cell specialization, including instructing cells to develop a unique cytoarchitecture, amass extensive protein synthesis machinery, and be embodied to respond to endoplasmic reticulum (ER) stress, remain largely uncharacterized. In this study, we discovered that the secretory cell transcription factor MIST1 (Bhlha15), previously shown to be essential for cytoskeletal organization and secretory activity, also functions as a potent ER stress-inducible transcriptional regulator. Genome-wide DNA binding studies, coupled with genetic mouse models, revealed MIST1 gene targets that function along the entire breadth of the protein synthesis, processing, transport, and exocytosis networks. Additionally, key MIST1 targets are essential for alleviating ER stress in these highly specialized cells. Indeed, MIST1 functions as a coregulator of the unfolded protein response (UPR) master transcription factor XBP1 for a portion of target genes that contain adjacent MIST1 and XBP1 binding sites. Interestingly, Mist1 gene expression is induced during ER stress by XBP1, but as ER stress subsides, MIST1 serves as a feedback inhibitor, directly binding the Xbp1 promoter and repressing Xbp1 transcript production. Together, our findings provide a new paradigm for XBP1-dependent UPR regulation and position MIST1 as a potential biotherapeutic for numerous human diseases.

19.
Mol Cell Biol ; 36(23): 2945-2955, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27644326

RESUMEN

Much remains unknown regarding the regulatory networks formed by transcription factors in mature, differentiated mammalian cells in vivo, despite many studies of individual DNA-binding transcription factors. We report a constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell. PTF1 is an atypical basic helix-loop-helix transcription factor complex of pancreatic acinar cells and is critical to acinar cell fate specification and differentiation. MIST1, also a basic helix-loop-helix transcription factor, enhances the formation and maintenance of the specialized phenotype of professional secretory cells. The MIST1 and PTF1 collaboration controls a wide range of specialized cellular processes, including secretory protein synthesis and processing, exocytosis, and homeostasis of the endoplasmic reticulum. PTF1 drives Mist1 transcription, and MIST1 and PTF1 bind and drive the transcription of over 100 downstream acinar genes. PTF1 binds two canonical bipartite sites within a 0.7-kb transcriptional enhancer upstream of Mist1 that are essential for the activity of the enhancer in vivo MIST1 and PTF1 coregulate target genes synergistically or additively, depending on the target transcriptional enhancer. The frequent close binding proximity of PTF1 and MIST1 in pancreatic acinar cell chromatin implies extensive collaboration although the collaboration is not dependent on a stable physical interaction.

20.
J Exp Med ; 213(10): 2019-37, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27573812

RESUMEN

Liposarcomas (LPSs) are the most common soft-tissue cancer. Because of the lack of animal models, the cellular origin and molecular regulation of LPS remain unclear. Here, we report that mice with adipocyte-specific activation of Notch signaling (Ad/N1ICD) develop LPS with complete penetrance. Lineage tracing confirms the adipocyte origin of Ad/N1ICD LPS. The Ad/N1ICD LPS resembles human dedifferentiated LPS in histological appearance, anatomical localization, and gene expression signature. Before transformation, Ad/N1ICD adipocytes undergo dedifferentiation that leads to lipodystrophy and metabolic dysfunction. Although concomitant Pten deletion normalizes the glucose metabolism of Ad/N1ICD mice, it dramatically accelerates the LPS prognosis and malignancy. Transcriptomes and lipidomics analyses indicate that Notch activation suppresses lipid metabolism pathways that supply ligands to Pparγ, the master regulator of adipocyte homeostasis. Accordingly, synthetic Pparγ ligand supplementation induces redifferentiation of Ad/N1ICD adipocytes and tumor cells, and prevents LPS development in Ad/N1ICD mice. Importantly, the Notch target HES1 is abundantly expressed in human LPS, and Notch inhibition suppresses the growth of human dedifferentiated LPS xenografts. Collectively, ectopic Notch activation is sufficient to induce dedifferentiation and tumorigenic transformation of mature adipocytes in mouse.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Diferenciación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Receptores Notch/metabolismo , Adipocitos/efectos de los fármacos , Animales , Biomarcadores de Tumor/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Diaminas/farmacología , Dibenzazepinas/farmacología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Liposarcoma/complicaciones , Liposarcoma/genética , Liposarcoma/patología , Síndrome Metabólico/patología , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Fosfohidrolasa PTEN/metabolismo , Lesiones Precancerosas/patología , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología , Tiazolidinedionas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...