Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Metab ; 1(1): 3, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24280005

RESUMEN

BACKGROUND: Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. RESULTS: We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2α. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction.Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1 induced ER-stress in U87 cells in lipoprotein-deplete conditions and prevented tumor growth in a xenograft model. CONCLUSIONS: Taken together, these results demonstrate that regulation of lipid composition by SREBP is essential to maintain the balance between protein and lipid biosynthesis downstream of Akt and to prevent resultant ER-stress and cell death. Regulation of lipid metabolism by the Akt/mTORC1 signaling axis is required for the growth and survival of cancer cells.

2.
Free Radic Biol Med ; 52(10): 2072-81, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22542446

RESUMEN

The impact of oxidative stress on mobilization of endogenous retroviruses and their effects on cell fate is unknown. We investigated the action of H2O2 on retrotransposition of an EGFP-tagged mouse LTR-retrotransposon, VL30, in an NIH3T3 cell-retrotransposition assay. H2O2 treatment of assay cells caused specific retrotranspositions documented by UV microscopy and PCR analysis. Flow cytometric analysis revealed an unusually high dose- and time-dependent retrotransposition frequency induced, ∼420,000-fold at 40 µM H2O2 compared to the natural frequency, which was reduced by ectopic expression of catalase. Remarkably, H2O2 moderately induced the RNA expression of retrotransposon B2 without affecting the basal expression of VL30s and L1 and significantly induced the expression of various endogenous reverse transcriptase genes. Further, whereas treatment with 50 µM FeCl2 alone was ineffective, cotreatment with 10 µM H2O2 and 50 µM FeCl2 caused a 6-fold higher retrotransposition induction than H2O2 alone, which was associated with cytotoxicity. H2O2- or H2O2/FeCl2-induced retrotransposition was significantly reduced by the iron chelator DFO or the antioxidant NAC, respectively. Furthermore, both H2O2-induced retrotransposition and associated cytotoxicity were inhibited after pretreatment of cells with DFO or the reverse transcriptase inhibitors efavirenz and etravirine. Our data show for the first time that H2O2, acting via iron, is a potent stimulus of retrotransposition contributing to oxidative stress-induced cell damage.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Estrés Oxidativo , Retroelementos/genética , Células 3T3 , Alquinos , Animales , Antioxidantes , Benzoxazinas/farmacología , Catalasa/biosíntesis , Catalasa/metabolismo , Línea Celular , Ciclopropanos , Proteínas Fluorescentes Verdes/genética , Ratones , Nitrilos , Piridazinas/farmacología , Pirimidinas , ARN Viral/biosíntesis , ADN Polimerasa Dirigida por ARN/biosíntesis , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Transducción de Señal
3.
Nat Rev Rheumatol ; 8(3): 153-62, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22293762

RESUMEN

The importance of inflammation in rheumatoid arthritis (RA) is well understood. This knowledge has resulted in the development of anti-inflammatory therapies--either broadly acting (such as steroids) or more specific approaches (such as antibodies against TNF)--with biologic therapies (including TNF inhibitors) revolutionizing the treatment of RA. However, what is less well appreciated in RA are the links between inflammation, blood-vessel formation (angiogenesis) and cellular responses to changes in oxygen tension. Inadequate oxygenation, termed hypoxia, is thought to drive the increase in synovial angiogenesis that occurs in RA, through expression of hypoxia-inducible molecules, including vascular endothelial growth factor (VEGF). This process promotes further infiltration of inflammatory cells and production of inflammatory mediators, perpetuating synovitis. This Review highlights the molecular pathways activated by hypoxia, and how these pathways might interact with inflammatory signaling to promote and maintain synovitis in RA, with a particular focus on the response of macrophages to hypoxia in the context of RA. Successful treatment of RA, for example with anti-TNF antibodies, reduces levels of proangiogenic factors, including VEGF, and leads to normalization of the vasculature. These processes emphasise the close links between hypoxia, angiogenesis and inflammation in this disease and supports the concept that angiogenesis blockade could be of therapeutic benefit in RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Neovascularización Patológica/metabolismo , Sinovitis/metabolismo , Regulación hacia Arriba/fisiología , Antirreumáticos/uso terapéutico , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Humanos , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Sinovitis/tratamiento farmacológico , Sinovitis/etiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA