Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 16(10): 1753-1769, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38020869

RESUMEN

Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring phenotype, but the underlying molecular mechanisms, especially those contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate) as well as DNA methylation and gene expression of glucocorticoid receptor (GR) and thyroid hormone receptor (THR) in great tits (Parus major). Eggs were injected before incubation onset with corticosterone (the main avian glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal hormone deposition. Breath rate during handling and gene expression of GR and THR were evaluated 14 days after hatching. Methylation status of GR and THR genes was analyzed from the longitudinal blood cells sampled 7 and 14 days after hatching, as well as the following autumn. Elevated prenatal corticosterone level significantly increased the breath rate during handling, indicating an enhanced metabolic stress response. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the GR putative promoter region, while it did not significantly affect GR gene expression. GR expression was negatively associated with earlier hatching date and chick size. THR methylation or expression did not exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that TH signaling may be more robust due to its crucial role in development. This study provides some support to the hypothesis suggesting that maternal corticosterone may influence offspring metabolic stress response via epigenetic alterations, yet their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-dependency, and the underlying molecular interplay needs further research.

2.
Diabetologia ; 65(9): 1534-1540, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716175

RESUMEN

AIMS/HYPOTHESIS: Distinct DNA methylation patterns have recently been observed to precede type 1 diabetes in whole blood collected from young children. Our aim was to determine whether perinatal DNA methylation is associated with later progression to type 1 diabetes. METHODS: Reduced representation bisulphite sequencing (RRBS) analysis was performed on umbilical cord blood samples collected within the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study. Children later diagnosed with type 1 diabetes and/or who tested positive for multiple islet autoantibodies (n = 43) were compared with control individuals (n = 79) who remained autoantibody-negative throughout the DIPP follow-up until 15 years of age. Potential confounding factors related to the pregnancy and the mother were included in the analysis. RESULTS: No differences in the umbilical cord blood methylation patterns were observed between the cases and controls at a false discovery rate <0.05. CONCLUSIONS/INTERPRETATION: Based on our results, differences between children who progress to type 1 diabetes and those who remain healthy throughout childhood are not yet present in the perinatal DNA methylome. However, we cannot exclude the possibility that such differences would be found in a larger dataset.


Asunto(s)
Diabetes Mellitus Tipo 1 , Autoanticuerpos , Niño , Preescolar , Metilación de ADN/genética , Femenino , Sangre Fetal/metabolismo , Glutamato Descarboxilasa , Humanos , Embarazo
3.
BMC Bioinformatics ; 23(1): 41, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030989

RESUMEN

BACKGROUND: DNA methylation is commonly measured using bisulfite sequencing (BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. Libraries with low conversion rates are typically excluded from analysis resulting in reduced coverage and increased costs. RESULTS: We have developed a probabilistic method and software, LuxRep, that implements a general linear model and simultaneously accounts for technical replicates (libraries from the same biological sample) from different bisulfite-converted DNA libraries. Using simulations and actual DNA methylation data, we show that including technical replicates with low bisulfite conversion rates generates more accurate estimates of methylation levels and differentially methylated sites. Moreover, using variational inference speeds up computation time necessary for whole genome analysis. CONCLUSIONS: In this work we show that taking into account technical replicates (i.e. libraries) of BS-seq data of varying bisulfite conversion rates, with their corresponding experimental parameters, improves methylation level estimation and differential methylation detection.


Asunto(s)
Análisis de Datos , Sulfitos , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
4.
Neurobiol Stress ; 15: 100374, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34401410

RESUMEN

Maternal depressive symptoms during pregnancy are a significant risk factor for adverse developmental and health outcomes of the offspring. The molecular mechanisms mediating the long-term effects of this exposure are not well understood. Previous studies have found association between prenatal exposure to maternal psychological distress and placental DNA methylation of candidate genes, which can influence placental barrier function and development of the fetus. Our objective in this study was to determine epigenome wide association of maternal depressive symptoms in early pregnancy with the placental DNA methylation. For this purpose we examined DNA methylomes of 92 placental samples by using reduced representation bisulfite sequencing. The placental samples were collected after deliveries of 39 girls and 59 boys, whose mothers had Edinburgh Postnatal Depression Score ranging from 0 to 19 at gestational week 14. According to our results maternal depressive symptoms are associated with DNA methylation of 2833 CpG sites, which are particularly over-represented in genic enhancers. The genes overlapping or nearest to these sites are functionally enriched for development of neurons and show expression enrichment in several regions of developing brain. The genomic regions harboring the DNA methylation marks are enriched for single nucleotide polymorphisms associated with mental disease trait class. Potential cellular signaling cascades mediating the effects include inflammatory and hormonal pathways. As a conclusion our results suggest that maternal depressive symptoms during early pregnancy are associated with DNA methylation marks in placenta in genes, which are important for the development and long-term health of the brain. Whether similar marks can be detected in exposed children remains to be elucidated in further studies.

5.
Clin Epigenetics ; 11(1): 130, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477183

RESUMEN

BACKGROUND: Alzheimer's disease results from a neurodegenerative process that starts well before the diagnosis can be made. New prognostic or diagnostic markers enabling early intervention into the disease process would be highly valuable. Environmental and lifestyle factors largely modulate the disease risk and may influence the pathogenesis through epigenetic mechanisms, such as DNA methylation. As environmental and lifestyle factors may affect multiple tissues of the body, we hypothesized that the disease-associated DNA methylation signatures are detectable in the peripheral blood of discordant twin pairs. RESULTS: Comparison of 23 disease discordant Finnish twin pairs with reduced representation bisulfite sequencing revealed peripheral blood DNA methylation differences in 11 genomic regions with at least 15.0% median methylation difference and FDR adjusted p value ≤ 0.05. Several of the affected genes are primarily associated with neuronal functions and pathologies and do not display disease-associated differences in gene expression in blood. The DNA methylation mark in ADARB2 gene was found to be differentially methylated also in the anterior hippocampus, including entorhinal cortex, of non-twin cases and controls. Targeted bisulfite pyrosequencing of the DNA methylation mark in ADARB2 gene in 62 Finnish and Swedish twin pairs revealed that, in addition to the disease status, DNA methylation of this region is influenced by gender, age, zygosity, APOE genotype, and smoking. Further analysis of 120 Swedish twin pairs indicated that this specific DNA methylation mark is not predictive for Alzheimer's disease and becomes differentially methylated after disease onset. CONCLUSIONS: DNA methylation differences can be detected in the peripheral blood of twin pairs discordant for Alzheimer's disease. These DNA methylation signatures may have value as disease markers and provide insights into the molecular mechanisms of pathogenesis. We found no evidence that the DNA methylation marks would be associated with gene expression in blood. Further studies are needed to elucidate the potential importance of the associated genes in neuronal functions and to validate the prognostic or diagnostic value of the individual marks or marker panels.


Asunto(s)
Adenosina Desaminasa/genética , Enfermedad de Alzheimer/genética , Metilación de ADN , Enfermedades en Gemelos/genética , Proteínas de Unión al ARN/genética , Gemelos Monocigóticos/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedades en Gemelos/sangre , Epigénesis Genética , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Suecia
6.
Sci Rep ; 6: 22190, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911679

RESUMEN

Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells, however, the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase, a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues.


Asunto(s)
Cariotipo Anormal , Catalasa/genética , Silenciador del Gen , Células Madre Pluripotentes/metabolismo , Neoplasias Testiculares/genética , Estudios de Casos y Controles , Catalasa/metabolismo , Línea Celular , Humanos , Masculino , Estrés Oxidativo , Células Madre Pluripotentes/enzimología , Neoplasias Testiculares/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...