Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Chem Biol ; 31(4): 792-804.e7, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37924814

RESUMEN

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

2.
Nano Lett ; 23(24): 11940-11948, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38055898

RESUMEN

Ubiquitin (Ub) ligases E3 are important factors in selecting target proteins for ubiquitination and determining the type of polyubiquitin chains on the target proteins. In the HECT (homologous to E6AP C-terminus)-type E3 ligases, the HECT domain is composed of an N-lobe and a C-lobe that are connected by a flexible hinge loop. The large conformational rearrangement of the HECT domain via the flexible hinge loop is essential for the HECT-type E3-mediated Ub transfer from E2 to a target protein. However, detailed insights into the structural dynamics of the HECT domain remain unclear. Here, we provide the first direct demonstration of the structural dynamics of the HECT domain using high-speed atomic force microscopy at the nanoscale. We also found that the flexibility of the hinge loop has a great impact not only on its structural dynamics but also on the formation mechanism of free Ub chains.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinación , Poliubiquitina/química , Poliubiquitina/metabolismo
3.
Plant Cell ; 35(12): 4347-4365, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37713604

RESUMEN

The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citoplasma/metabolismo , Pared Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Raíces de Plantas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
4.
Nano Lett ; 23(13): 6259-6268, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37141711

RESUMEN

Amyloid-ß (Aß) aggregation intermediates, including oligomers and protofibrils (PFs), have attracted attention as neurotoxic aggregates in Alzheimer's disease. However, due to the complexity of the aggregation pathway, the structural dynamics of aggregation intermediates and how drugs act on them have not been clarified. Here we used high-speed atomic force microscopy to observe the structural dynamics of Aß42 PF at the single-molecule level and the effect of lecanemab, an anti-Aß PF antibody with the positive results from Phase 3 Clarity AD. PF was found to be a curved nodal structure with stable binding angle between individual nodes. PF was also a dynamic structure that associates with other PF molecules and undergoes intramolecular cleavage. Lecanemab remained stable in binding to PFs and to globular oligomers, inhibiting the formation of large aggregates. These results provide direct evidence for a mechanism by which antibody drugs interfere with the Aß aggregation process.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Microscopía de Fuerza Atómica , Fragmentos de Péptidos
5.
Biochemistry ; 62(11): 1823-1831, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220271

RESUMEN

Peroxiredoxins (Prxs) belong to a family of ubiquitously expressed peroxidases that detoxify reactive oxygen species. In addition to their enzymatic function, Prxs also function as molecular chaperones. This functional switch is related to their degree of oligomerization. We have previously revealed that Prx2 interacts with anionic phospholipids and that the anionic phospholipid-containing Prx2 oligomer forms a high molecular weight (HMW) complex in a nucleotide-dependent manner. However, the detailed mechanism of the oligomer and HMW complex formation remains unclear. In this study, we investigated the anionic phospholipid binding site in Prx2 using site-directed mutagenesis to understand the mechanism of the oligomer formation. Our findings demonstrated that six binding site residues in Prx2 are important for the binding of anionic phospholipids.


Asunto(s)
Antioxidantes , Peroxirredoxinas , Peroxirredoxinas/química , Fosfolípidos , Especies Reactivas de Oxígeno , Chaperonas Moleculares/metabolismo
6.
PLoS One ; 17(12): e0278553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36548224

RESUMEN

Annexin V forms trimeric structures which further assemble into two-dimensional crystal (2D crystal) lattices on negatively charged phospholipid bilayer in a Ca2+-dependent manner. It is also known that annexin V 2D crystals show two types of symmetric patterns with six-fold symmetry (p6) and three-fold symmetry (p3). The p6 lattice also contains additional trimers in the gaps between the p6 axes, which are also referred to as non-p6 trimers because they do not participate in the formation of the p6 lattice. We here show that the annexin V N-terminal has significant influence on 2D crystal formation using high-speed atomic force microscopy (HS-AFM) observations. We also present a quick purification method to purify recombinant annexin V without any residual affinity tag after protein purification in ~3h.


Asunto(s)
Calcio , Fosfolípidos , Anexina A5/metabolismo , Calcio/metabolismo
7.
Opt Express ; 30(14): 25006-25019, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237041

RESUMEN

This study proposes a novel computational imaging system that integrates a see-through screen (STS) with volume holographic optical elements (vHOEs) and a digital camera unit. Because of the unique features of the vHOE, the STS can function as a holographic waveguide device (HWD) and enable the camera to capture the frontal image when the user gazes at the screen. This system not only provides an innovative solution to a high-quality video communication system by realizing eye-contact but also contributes to other visual applications due to its refined structure. However, there is a dilemma in the proposed imaging system: for a wider field of view, a larger vHOE is necessary. If the size of the vHOE is larger, the light rays from the same object point are diffracted at different Bragg conditions and reflect a different number of times, which causes blurring of the captured image. The system imaging process is analyzed by ray tracing, and a digital image reconstruction method was employed to obtain a clear picture in this study. Optical experiments confirmed the effectiveness of the proposed HWD-STS camera.

8.
Phytopathology ; 112(7): 1524-1536, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35238604

RESUMEN

Cassiicolin (Cas), a toxin produced by Corynespora cassiicola, is responsible for Corynespora leaf fall disease in susceptible rubber trees. Currently, the molecular mechanisms of the cytotoxicity of Cas and its host selectivity have not been fully elucidated. Here, we analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane disruption activities. Using high-speed atomic force microscopy and confocal microscopy, we reveal that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more sensitive to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. Mature Cas1 and Cas2 play an essential role in causing membrane disruption. Cytotoxicity tests on rubber leaves of Rubber Research Institute of Vietnam (RRIV) 1, RRIV 4, and Prang Besar (PB) 255 clones suggest that the toxins cause necrosis of rubber leaves, except for the strong resistance of PB 255 against Cas2. Cryogenic scanning electron microscopy analyses of necrotic leaf tissues treated with Cas1 confirm that cytoplasmic membranes are vulnerable to the toxin. Thus, the host selectivity of Cas toxin is attained by the lipid-dependent binding activity of Cas to the membrane, and the cytotoxicity of Cas arises from its ability to form biofilm-like structures and to disrupt specific membranes.


Asunto(s)
Proteínas Asociadas a CRISPR , Hevea , Lípidos , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Goma
9.
Sensors (Basel) ; 21(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202353

RESUMEN

We used a resonant-tunneling-diode (RTD) oscillator as the source of a terahertz-wave radar based on the principle of the swept-source optical coherence tomography (SS-OCT). Unlike similar reports in the terahertz range, we apply the stepwise frequency modulation to a subcarrier obtained by amplitude modulation instead of tuning the terahertz carrier frequency. Additionally, we replace the usual optical interference with electrical mixing and, by using a quadrature mixer, we can discriminate between negative and positive optical path differences, which doubles the measurement range without increasing the measurement time. To measure the distance to multiple targets simultaneously, the terahertz wave is modulated in amplitude at a series of frequencies; the signal returning from the target is detected and homodyne mixed with the original modulation signal. A series of voltages is obtained; by Fourier transformation the distance to each target is retrieved. Experimental results on one and two targets are shown.

10.
ACS Nano ; 14(8): 9979-9989, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32678577

RESUMEN

Fibril formation is an obligatory process in amyloid diseases and is characterized by nucleation and elongation phases that result in the formation of long filaments with cross-ß sheet structure. The kinetics of this process, as well as that of secondary nucleation, is controlled by a variety of factors, including nucleus (seed) structure, monomer conformation, and biochemical milieu. Some fibrillar amyloid assemblies act as prions, replicating themselves from protein monomers templated by existing prion seeds. Prion strains, which are characterized by distinct physicochemical and pathologic properties, may also form due to perturbation of the templating process within the susceptible organism. Understanding the types and effects of perturbations occurring during the development and progression of Parkinson's disease is an area requiring more study. Here, we used high-speed atomic force microscopy to determine the kinetics and structural dynamics of α-synuclein fibril elongation initiated by self-seeding or cross-seeding of wild-type (WT) or mutant α-synuclein with WT or mutant α-synuclein seeds. We found that cross-seeding modulated not only elongation rates but also the structures of the growing fibrils. Some fibrils produced in this manner had structures distinct from their "parent" seeds. In other cases, cross-seeding was not observed at all. These findings suggest that α-synuclein sequence variants can produce different types of strains by self- or cross-seeding. Perpetuation of specific strains then would depend on the relative rates of fibril growth and the relative stabilities of the fibrils formed by each strain.


Asunto(s)
Priones , alfa-Sinucleína , Amiloide , Cinética , Microscopía de Fuerza Atómica
11.
Proc Natl Acad Sci U S A ; 117(14): 7831-7836, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32213585

RESUMEN

The yeast prion protein Sup35, which contains intrinsically disordered regions, forms amyloid fibrils responsible for a prion phenotype [PSI+]. Using high-speed atomic force microscopy (HS-AFM), we directly visualized the prion determinant domain (Sup35NM) and the formation of its oligomers and fibrils at subsecond and submolecular resolutions. Monomers with freely moving tail-like regions initially appeared in the images, and subsequently oligomers with distinct sizes of ∼1.7 and 3 to 4 nm progressively accumulated. Nevertheless, these oligomers did not form fibrils, even after an incubation for 2 h in the presence of monomers. Fibrils appeared after much longer monomer incubation. The fibril elongation occurred smoothly without discrete steps, suggesting gradual conversions of the incorporated monomers into cross-ß structures. The individual oligomers were separated from each other and also from the fibrils by respective, identical lengths on the mica surface, probably due to repulsion caused by the freely moving disordered regions. Based on these HS-AFM observations, we propose that the freely moving tails of the monomers are incorporated into the fibril ends, and then the structural conversions to cross-ß structures gradually occur.


Asunto(s)
Amiloide/ultraestructura , Microscopía de Fuerza Atómica , Factores de Terminación de Péptidos/ultraestructura , Proteínas Priónicas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Amiloide/genética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Proteínas Priónicas/genética , Conformación Proteica en Lámina beta/genética , Dominios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Nat Commun ; 11(1): 370, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953386

RESUMEN

The human Mre11/Rad50 complex is one of the key factors in genome maintenance pathways. Previous nanoscale imaging by atomic force microscopy (AFM) showed that the ring-like structure of the human Mre11/Rad50 complex transiently opens at the zinc hook of Rad50. However, imaging of the human Mre11/Rad50 complex by high-speed AFM shows that the Rad50 coiled-coil arms are consistently bridged by the dimerized hooks while the Mre11/Rad50 ring opens by disconnecting the head domains; resembling other SMC proteins such as cohesin or condensin. These architectural features are conserved in the yeast and bacterial Mre11/Rad50 complexes. Yeast strains harboring the chimeric Mre11/Rad50 complex containing the SMC hinge of bacterial condensin MukB instead of the RAD50 hook properly functions in DNA repair. We propose that the basic role of the Rad50 hook is similar to that of the SMC hinge, which serves as rather stable dimerization interface.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Unión al ADN/química , Dimerización , Zinc/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Adenosina Trifosfatasas , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/metabolismo , Microscopía de Fuerza Atómica , Complejos Multiproteicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Cohesinas
13.
ACS Omega ; 4(6): 9603-9614, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460051

RESUMEN

The reactive cysteine residue at position 106 (Cys106) of DJ-1 is preferentially oxidized under oxidative stress, generating oxidized DJ-1 (oxDJ-1). Oxidation of Cys106 to sulfinic acid changes the biologic action of DJ-1 and increases its cytoprotective properties. The similar activation step is known in peroxiredoxins (Prxs), in which oxidation of reactive Cys to sulfinic acid induces polymerization of Prxs and changes its enzyme characteristic from peroxidase to molecular chaperone. In the present study, oxDJ-1 was prepared and its polymerization and related amino acid residues were investigated. We found that oxDJ-1 formed a characteristic polymer with disulfide bonds and with noncovalent and covalent binding other than disulfide. The physiological concentration of glutathione resolved the polymer form of oxDJ-1, and glutathionylation of other two Cys residues, such as Cys 46 and 53, was detected. Mutant analysis indicated the necessity not only of Cys106 but also of Cys46 for the polymer formation. The cellular experiment demonstrated that the electrophilic quinone treatment induced a high-molecular-weight complex containing oxDJ-1. Dynamic polymerization of oxDJ-1 with a ring and a stacked structure was observed by an atomic force microscope. Collectively, these results clearly demonstrated the characteristic polymer formation of oxDJ-1 with a disulfide bond and noncovalent and covalent binding other than disulfide, which might be related to the biologic function of oxDJ-1.

14.
Nat Plants ; 5(4): 447, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30932014

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Structure ; 27(1): 152-160.e3, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30318467

RESUMEN

Membrane proteins play important roles in various cellular functions. To analyze membrane proteins, nanodisc technology using membrane scaffold proteins allows single membrane protein units to be embedded into the lipid bilayer disc without detergents. Recent advancements in high-speed atomic force microscopy (HS-AFM) have enabled us to monitor the real-time dynamics of proteins in solution at the nanometer scale. In this study, we report HS-AFM imaging of membrane proteins reconstituted into nanodiscs using two membrane protein complexes, SecYEG complex and MgtE dimer. The observed images showed single particles of membrane protein-embedded nanodiscs in an end-up orientation whereby the membrane was fixed parallel to the supporting solid surface and in a side-on orientation whereby the membrane plane was vertically fixed to the solid surface, enabling the elucidation of domain fluctuations in membrane proteins. This technique provides a basic method for the high-resolution imaging of single membrane proteins by HS-AFM.


Asunto(s)
Antiportadores/química , Proteínas Bacterianas/química , Nanopartículas/química , Canales de Translocación SEC/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos
16.
Nat Plants ; 4(11): 888-897, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30390081

RESUMEN

Root hairs elongate by tip growth and simultaneously harden the shank by constructing the inner secondary cell wall layer. While much is known about the process of tip growth1, almost nothing is known about the mechanism by which root hairs harden the shank. Here we show that phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), the enzymatic product of FORMATION OF APLOID AND BINUCLEATE CELLS 1 (FAB1), is involved in the hardening of the shank in root hairs in Arabidopsis. FAB1 and PtdIns(3,5)P2 localize to the plasma membrane along the shank of growing root hairs. By contrast, phosphatidylinositol 4-phosphate 5-kinase 3 (PIP5K3) and PtdIns(4,5)P2 localize to the apex of the root hair where they are required for tip growth. Reduction of FAB1 function results in the formation of wavy root hairs while those of the wild type are straight. The localization of FAB1 in the plasma membrane of the root hair shank requires the activity of Rho-related GTPases from plants 10 (ROP10) and localization of ROP10 requires FAB1 activity. Computational modelling of root hair morphogenesis successfully reproduces the wavy root hair phenotype. Taken together, these data demonstrate that root hair shank hardening requires PtdIns(3,5)P2/ROP10 signalling.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Fosfatos de Fosfatidilinositol/fisiología , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
17.
Chem Commun (Camb) ; 54(87): 12318-12321, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30298869

RESUMEN

MyD88 (myeloid differentiation factor 88) is an important protein in innate immunity. Two structural domains of MyD88 have been well characterized separately, but the global architecture of full-length MyD88 remained unclear. Here, we propose an autosuppressive mechanism of MyD88 regulated by the intramolecular interaction between the two domains.

18.
J Mol Biol ; 430(5): 602-610, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29309753

RESUMEN

The function of ubiquitous 2-Cys peroxiredoxins (Prxs) can be converted alternatively from peroxidases to molecular chaperones. This conversion has been reported to occur by the formation of high-molecular-weight (HMW) complexes upon overoxidation of or ATP/ADP binding to 2-Cys Prxs, but its mechanism is not well understood. Here, we show that upon binding to phosphatidylserine or phosphatidylglycerol dimeric human 2-Cys PrxII (hPrxII) is assembled to trefoil-shaped small oligomers (possibly hexamers) with full chaperone and null peroxidase activities. Spherical HMW complexes are formed, only when phosphatidylserine or phosphatidylglycerol is bound to overoxidized or ATP/ADP-bound hPrxII. The spherical HMW complexes are lipid vesicles covered with trefoil-shaped oligomers arranged in a hexagonal lattice pattern. Thus, these lipids with a net negative charge, which can be supplied by increased membrane trafficking under oxidative stress, are essential for the structural and functional switch of hPrxII and possibly most 2-Cys Prxs.


Asunto(s)
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Fosfatidilgliceroles/metabolismo , Fosfatidilserinas/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Lípidos/química , Estrés Oxidativo/fisiología , Peroxidasa/química , Peroxidasa/metabolismo , Peroxirredoxinas/química , Peroxirredoxinas/genética , Fosfatidilgliceroles/química , Fosfatidilserinas/química , Fosfolípidos/química
19.
Biochem Biophys Res Commun ; 496(2): 686-692, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29288669

RESUMEN

Ubiquitination of target proteins is accomplished by isopeptide bond formation between the carboxy group of the C-terminal glycine (Gly) residue of ubiquitin (Ub) and the ɛ-amino group of lysine (Lys) on the target proteins. The formation of an isopeptide bond between Ubs that gives rise to a poly-Ub chain on the target proteins and the types of poly-Ub chains formed depend on which of the seven Lys residues or N-terminal methionine (Met) residue on Ub is used for chain elongation. To understand the linkage specificity mechanism of Ub chains on E3, the previous study established an assay to monitor the formation of a free diubiquitin chain (Ub2 chain synthesis assay) by HECT type E3 ligase. In this study, we investigated Ub2 chain specificity using E6AP HECT domain. We here demonstrate the importance of the N-terminal domain of full length E6AP for Ub2 chain specificity.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Lisina/análisis , Lisina/metabolismo , Metionina/análisis , Metionina/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Dominios Proteicos , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
20.
Biophys Physicobiol ; 14: 111-117, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28828286

RESUMEN

In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...