Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Vaccine ; 41(41): 6083-6092, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37652822

RESUMEN

BACKGROUND: To inform response strategies, we examined type 1 humoral and intestinal immunity induced by 1) one fractional inactivated poliovirus vaccine (fIPV) dose given with monovalent oral poliovirus vaccine (mOPV1), and 2) mOPV1 versus bivalent OPV (bOPV). METHODS: We conducted a randomized, controlled, open-label trial in Dhaka, Bangladesh. Healthy infants aged 5 weeks were block randomized to one of four arms: mOPV1 at age 6-10-14 weeks/fIPV at 6 weeks (A); mOPV1 at 6-10-14 weeks/fIPV at 10 weeks (B); mOPV1 at 6-10-14 weeks (C); and bOPV at 6-10-14 weeks (D). Immune response at 10 weeks and cumulative response at 14 weeks was assessed among the modified intention-to-treat population, defined as seroconversion from seronegative (<1:8 titers) to seropositive (≥1:8) or a four-fold titer rise among seropositive participants sustained to age 18 weeks. We examined virus shedding after two doses of mOPV1 with and without fIPV, and after the first mOPV1 or bOPV dose. The trial is registered at ClinicalTrials.gov (NCT03722004). FINDINGS: During 18 December 2018 - 23 November 2019, 1,192 infants were enrolled (arms A:301; B:295; C:298; D:298). Immune responses at 14 weeks did not differ after two mOPV1 doses alone (94% [95% CI: 91-97%]) versus two mOPV1 doses with fIPV at 6 weeks (96% [93-98%]) or 10 weeks (96% [93-98%]). Participants who received mOPV1 and fIPV at 10 weeks had significantly lower shedding (p < 0·001) one- and two-weeks later compared with mOPV1 alone. Response to one mOPV1 dose was significantly higher than one bOPV dose (79% versus 67%; p < 0·001) and shedding two-weeks later was significantly higher after mOPV1 (76% versus 56%; p < 0·001) indicating improved vaccine replication. Ninety-nine adverse events were reported, 29 serious including two deaths; none were attributed to study vaccines. INTERPRETATION: Given with the second mOPV1 dose, fIPV improved intestinal immunity but not humoral immunity. One mOPV1 dose induced higher humoral and intestinal immunity than bOPV. FUNDING: U.S. Centers for Disease Control and Prevention.


Asunto(s)
Inmunidad Mucosa , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Humanos , Lactante , Bangladesh , Poliovirus , Vacuna Antipolio de Virus Inactivados/efectos adversos , Estados Unidos , Poliomielitis/prevención & control
2.
Nature ; 619(7968): 135-142, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316671

RESUMEN

Vaccination with Sabin, a live attenuated oral polio vaccine (OPV), results in robust intestinal and humoral immunity and has been key to controlling poliomyelitis. As with any RNA virus, OPV evolves rapidly to lose attenuating determinants critical to the reacquisition of virulence1-3 resulting in vaccine-derived, virulent poliovirus variants. Circulation of these variants within underimmunized populations leads to further evolution of circulating, vaccine-derived poliovirus with higher transmission capacity, representing a significant risk of polio re-emergence. A new type 2 OPV (nOPV2), with promising clinical data on genetic stability and immunogenicity, recently received authorization from the World Health Organization for use in response to circulating, vaccine-derived poliovirus outbreaks. Here we report the development of two additional live attenuated vaccine candidates against type 1 and 3 polioviruses. The candidates were generated by replacing the capsid coding region of nOPV2 with that from Sabin 1 or 3. These chimeric viruses show growth phenotypes similar to nOPV2 and immunogenicity comparable to their parental Sabin strains, but are more attenuated. Our experiments in mice and deep sequencing analysis confirmed that the candidates remain attenuated and preserve all the documented nOPV2 characteristics concerning genetic stability following accelerated virus evolution. Importantly, these vaccine candidates are highly immunogenic in mice as monovalent and multivalent formulations and may contribute to poliovirus eradication.


Asunto(s)
Poliomielitis , Vacuna Antipolio Oral , Poliovirus , Vacunas Atenuadas , Animales , Ratones , Modelos Animales de Enfermedad , Poliomielitis/inmunología , Poliomielitis/prevención & control , Poliomielitis/virología , Poliovirus/clasificación , Poliovirus/genética , Poliovirus/inmunología , Vacuna Antipolio Oral/química , Vacuna Antipolio Oral/genética , Vacuna Antipolio Oral/inmunología , Vacunas Atenuadas/química , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Erradicación de la Enfermedad
3.
Lancet Infect Dis ; 23(9): 1062-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37178706

RESUMEN

BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) was developed by modifying the Sabin strain to increase genetic stability and reduce risk of seeding new circulating vaccine-derived poliovirus type 2 outbreaks. Bivalent oral poliovirus vaccine (bOPV; containing Sabin types 1 and 3) is the vaccine of choice for type 1 and type 3 outbreak responses. We aimed to assess immunological interference between nOPV2 and bOPV when administered concomitantly. METHODS: We conducted an open-label, non-inferiority, randomised, controlled trial at two clinical trial sites in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomly assigned (1:1:1) using block randomisation, stratified by site, to receive nOPV2 only, nOPV2 plus bOPV, or bOPV only, at the ages of 6 weeks, 10 weeks, and 14 weeks. Eligibility criteria included singleton and full term (≥37 weeks' gestation) birth and parents intending to remain in the study area for the duration of study follow-up activities. Poliovirus neutralising antibody titres were measured at the ages of 6 weeks, 10 weeks, 14 weeks, and 18 weeks. The primary outcome was cumulative immune response for all three poliovirus types at the age of 14 weeks (after two doses) and was assessed in the modified intention-to-treat population, which was restricted to participants with adequate blood specimens from all study visits. Safety was assessed in all participants who received at least one dose of study product. A non-inferiority margin of 10% was used to compare single and concomitant administration. This trial is registered with ClinicalTrials.gov, NCT04579510. FINDINGS: Between Feb 8 and Sept 26, 2021, 736 participants (244 in the nOPV2 only group, 246 in the nOPV2 plus bOPV group, and 246 in the bOPV only group) were enrolled and included in the modified intention-to-treat analysis. After two doses, 209 (86%; 95% CI 81-90) participants in the nOPV2 only group and 159 (65%; 58-70) participants in the nOPV2 plus bOPV group had a type 2 poliovirus immune response; 227 (92%; 88-95) participants in the nOPV2 plus bOPV group and 229 (93%; 89-96) participants in the bOPV only group had a type 1 response; and 216 (88%; 83-91) participants in the nOPV2 plus bOPV group and 212 (86%; 81-90) participants in the bOPV only group had a type 3 response. Co-administration was non-inferior to single administration for types 1 and 3, but not for type 2. There were 15 serious adverse events (including three deaths, one in each group, all attributable to sudden infant death syndrome); none were attributed to vaccination. INTERPRETATION: Co-administration of nOPV2 and bOPV interfered with immunogenicity for poliovirus type 2, but not for types 1 and 3. The blunted nOPV2 immunogenicity we observed would be a major drawback of using co-administration as a vaccination strategy. FUNDING: The US Centers for Disease Control and Prevention.


Asunto(s)
Poliomielitis , Poliovirus , Lactante , Humanos , Vacuna Antipolio Oral , Poliomielitis/epidemiología , Vacuna Antipolio de Virus Inactivados , Bangladesh/epidemiología , Esquemas de Inmunización , Inmunogenicidad Vacunal , Anticuerpos Antivirales
4.
Vaccine ; 41(10): 1657-1667, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746739

RESUMEN

BACKGROUND: Inactivated trivalent poliovirus vaccine (IPV) induces humoral immunity, which protects against paralytic poliomyelitis but does not induce sufficient mucosal immunity to block intestinal infection. We assessed the intestinal immunity in healthy adults in Belgium conferred by a co-formulation of IPV with the mucosal adjuvant double mutant Labile Toxin (dmLT) derived from Escherichia coli. METHODS: Healthy fully IPV-vaccinated 18-45-year-olds were randomly allocated to three groups: on Day 1 two groups received one full dose of IPV (n = 30) or IPV + dmLT (n = 30) in a blinded manner, and the third received an open-label dose of bivalent live oral polio vaccine (bOPV types 1 and 3, n = 20). All groups received a challenge dose of bOPV on Day 29. Participants reported solicited and unsolicited adverse events (AE) using study diaries. Mucosal immune responses were measured by fecal neutralization and IgA on Days 29 and 43, with fecal shedding of challenge viruses measured for 28 days. Humoral responses were measured by serum neutralizing antibody (NAb). RESULTS: Solicited and unsolicited AEs were mainly mild-to-moderate and transient in all groups, with no meaningful differences in rates between groups. Fecal shedding of challenge viruses in both IPV groups exceeded that of the bOPV group but was not different between IPV and IPV + dmLT groups. High serum NAb responses were observed in both IPV groups, alongside modest levels of fecal neutralization and IgA. CONCLUSIONS: Addition of dmLT to IPV administered intramuscularly neither affected humoral nor intestinal immunity nor decreased fecal virus shedding following bOPV challenge. The tolerability of the dose of dmLT used in this study may allow higher doses to be investigated for impact on mucosal immunity. Registered on ClinicalTrials.gov - NCT04232943.


Asunto(s)
Poliomielitis , Vacuna Antipolio de Virus Inactivados , Humanos , Adulto , Poliomielitis/prevención & control , Calor , Vacuna Antipolio Oral , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Inmunoglobulina A
5.
Lancet ; 401(10371): 131-139, 2023 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-36495882

RESUMEN

BACKGROUND: Type 2 circulating vaccine-derived polioviruses (cVDPV2) from Sabin oral poliovirus vaccines (OPVs) are the leading cause of poliomyelitis. A novel type 2 OPV (nOPV2) has been developed to be more genetically stable with similar tolerability and immunogenicity to that of Sabin type 2 vaccines to mitigate the risk of cVDPV2. We aimed to assess these aspects of nOPV2 in poliovirus vaccine-naive newborn infants. METHODS: In this randomised, double-blind, controlled, phase 2 trial we enrolled newborn infants at the Matlab Health Research Centre, Chandpur, Bangladesh. We included infants who were healthy and were a single birth after at least 37 weeks' gestation. Infants were randomly assigned (2:1) to receive either two doses of nOPV2 or placebo, administered at age 0-3 days and at 4 weeks. Exclusion criteria included receipt of rotavirus or any other poliovirus vaccine, any infection or illness at the time of enrolment (vomiting, diarrhoea, or intolerance to liquids), diagnosis or suspicion of any immunodeficiency disorder in the infant or a close family member, or any contraindication for venipuncture. The primary safety outcome was safety and tolerability after one and two doses of nOPV2, given 4 weeks apart in poliovirus vaccine-naive newborn infants and the primary immunogenicity outcome was the seroconversion rate for neutralising antibodies against type 2 poliovirus, measured 28 days after the first and second vaccinations with nOPV2. Study staff recorded solicited and unsolicited adverse events after each dose during daily home visits for 7 days. Poliovirus neutralising antibody responses were measured in sera drawn at birth and at age 4 weeks and 8 weeks. This study is registered on ClinicalTrials.gov, NCT04693286. FINDINGS: Between Sept 21, 2020, and Aug 16, 2021, we screened 334 newborn infants, of whom three (<1%) were found to be ineligible and one (<1%) was withdrawn by the parents; the remaining 330 (99%) infants were assigned to receive nOPV2 (n=220 [67%]) or placebo (n=110 [33%]). nOPV2 was well tolerated; 154 (70%) of 220 newborn infants in the nOPV2 group and 78 (71%) of 110 in the placebo group had solicited adverse events, which were all mild or moderate in severity. Severe unsolicited adverse events in 11 (5%) vaccine recipients and five (5%) placebo recipients were considered unrelated to vaccination. 306 (93%) of 330 infants had seroprotective maternal antibodies against type 2 poliovirus at birth, decreasing to 58 (56%) of 104 in the placebo group at 8 weeks. In the nOPV2 group 196 (90%) of 217 infants seroconverted by week 8 after two doses, when 214 (99%) had seroprotective antibodies. INTERPRETATION: nOPV2 was well tolerated and immunogenic in newborn infants, with two doses, at birth and 4 weeks, resulting in almost 99% of infants having protective neutralising antibodies. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Poliomielitis , Poliovirus , Recién Nacido , Humanos , Lactante , Preescolar , Bangladesh , Anticuerpos Antivirales , Vacuna Antipolio Oral , Poliomielitis/prevención & control , Anticuerpos Neutralizantes , Método Doble Ciego
6.
Lancet Microbe ; 3(12): e912-e921, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36332645

RESUMEN

BACKGROUND: Sabin strains used in oral poliovirus vaccines (OPV) can revert to virulence and, in rare instances, cause disease or generate vaccine-derived strains leading to outbreaks in areas of low immunisation coverage. A novel OPV2 (nOPV2) was designed to stabilise the viral genome against reversion and reduce recombination events that might lead to virulent strains. In this study, we evaluated the genetic and phenotypic stability of shed poliovirus following administration of one dose of monovalent OPV2 (mOPV2) or nOPV2 to infants aged 18-22 weeks. METHODS: In two similarly designed clinical trials (NCT02521974 and NCT03554798) conducted in Panama, infants aged 18-22-weeks, after immunisation with three doses of bivalent OPV (types 1 and 3) and one dose of inactivated poliovirus vaccine, were administered one or two doses of mOPV2 or nOPV2. In this analysis of two clinical trials, faecally shed polioviruses following one dose of mOPV2 or nOPV2 were isolated from stools meeting predetermined criteria related to sample timing and viral presence and quantity and assessed for nucleotide polymorphisms using next-generation sequencing. A transgenic mouse neurovirulence test was adapted to assess the effect of the possible phenotypic reversion of shed mOPV2 and nOPV2 with a logistic regression model. FINDINGS: Of the 91 eligible samples, 86 were able to be sequenced, with 72 evaluated in the transgenic mouse assay. Sabin-2 poliovirus reverts rapidly at nucleotide 481, the primary attenuation site in domain V of the 5' untranslated region of the genome. There was no evidence of neurovirulence-increasing polymorphisms in domain V of shed nOPV2. Reversion of shed Sabin-2 virus corresponded with unadjusted paralysis rates of 47·6% at the 4 log10 50% cell culture infectious dose (CCID50) and 76·7% at the 5 log10 CCID50 inoculum levels, with rates of 2·8% for 4 log10 CCID50 and 11·8% for 5 log10 CCID50 observed for shed nOPV2 samples. The estimated adjusted odds ratio at 4·5 log10 of 0·007 (95% CI 0·002-0·023; p<0·0001) indicates significantly reduced odds of mouse paralysis from virus obtained from nOPV2 recipients compared with mOPV2 recipients. INTERPRETATION: The data indicate increased genetic stability of domain V of nOPV2 relative to mOPV2, with significantly lower neurovirulence of shed nOPV2 virus compared with shed mOPV2. While this vaccine is currently being deployed under an emergency use listing, the data on the genetic stability of nOPV2 will support further regulatory and policy decision-making regarding use of nOPV2 in outbreak responses. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Poliomielitis , Poliovirus , Ratones , Animales , Poliovirus/genética , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Regiones no Traducidas 5' , Ratones Transgénicos , Parálisis , Nucleótidos
7.
J Virol Methods ; 308: 114590, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35878654

RESUMEN

Virus neutralization assays, widely used to detect and quantify antibodies induced by virus infection, are considered the gold standard for enterovirus serology testing. Conventional microneutralization assays have been used to assess enterovirus D68 (EV-D68) seroprevalence. While manual or automated 96-well assays are valuable, higher-density assays that increase throughput provide the opportunity to more efficiently screen large, population-based serology collections, as well as to test sample sets against multiple virus strains on the same plate or within the same run. Here, automation was implemented for bulk reagent dispensing, serial dilutions, and luminescence measurement to develop a 384-well enterovirus microneutralization assay that increases overall testing throughput, maintains the reproducibility of the standard 96-well assay, and reduces sample volume usage. EV-D68 strains Fermon, 14-18953, and 18-23087 were used to evaluate the automated 384-well microneutralization assay and compare to the conventional 96-well assay. Sensitivity and specificity were evaluated using pooled human sera and positive and negative control antisera. The Lower Limit of quantitation (LLOQ) was the same as for the 96-well assay and coefficients of variations (CV) of 7.35 %, 5.97 %, and 2.85 % for the three EV-D68 strains respectively, were well below the typical goal of ≤ 20 % CV for accuracy. Z-factor analysis yielded results of 0.694, 0.638, and 0.852, for the three EV-D68 strains respectively, indicating a high level of precision, reliability, and robustness. Intra-assay (7.25 %) and inter-assay (7.12 %) variability were well below 20 % CV. Moreover, the 96-well and 384-well versions of the assay were highly concordant, with a 0.955 correlation coefficient in titers obtained for 50 sera tested. Validation of this automated 384-well microneutralization will support its use in large serology screens assessing the presence of EV-D68 neutralizing antibodies in human populations.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Anticuerpos Neutralizantes/análisis , Humanos , Reproducibilidad de los Resultados , Estudios Seroepidemiológicos
8.
J Virol ; 96(8): e0005522, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35353001

RESUMEN

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Asunto(s)
Receptor Nogo 1 , Reoviridae , Animales , Molécula A de Adhesión de Unión/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Reoviridae/metabolismo , Infecciones por Reoviridae/virología
9.
NPJ Vaccines ; 7(1): 19, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149714

RESUMEN

Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence. In contrast, there were significantly reduced odds of mouse paralysis for shed virus for both nOPV2 candidates when compared to shed Sabin-2 virus. Next-generation sequencing of shed viral genomes was consistent with and further supportive of the observed neurovirulence associated with shed Sabin-2 virus, as well as the reduced reversion to virulence of shed candidate viruses. While shed Sabin-2 showed anticipated A481G reversion in the primary attenuation site in domain V in the 5' untranslated region to be associated with increased mouse paralysis, the stabilized domain V in the candidate viruses did not show polymorphisms consistent with reversion to neurovirulence. The available data from a key target age group for outbreak response confirm the superior genetic and phenotypic stability of shed nOPV2 strains compared to shed Sabin-2 and suggest that nOPV2 should be associated with less paralytic disease and potentially a lower risk of seeding new outbreaks.

10.
J Infect Dis ; 226(5): 852-861, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34610135

RESUMEN

BACKGROUND: Primary intestinal immunity through viral replication of live oral vaccine is key to interrupt poliovirus transmission. We assessed viral fecal shedding from infants administered Sabin monovalent poliovirus type 2 vaccine (mOPV2) or low and high doses of 2 novel OPV2 (nOPV2) vaccine candidates. METHODS: In 2 randomized clinical trials in Panama, a control mOPV2 study (October 2015 to April 2016) and nOPV2 study (September 2018 to October 2019), 18-week-old infants vaccinated with bivalent oral poliovirus vaccine/inactivated poliovirus vaccine received 1 or 2 study vaccinations 28 days apart. Stools were assessed for poliovirus RNA by polymerase chain reaction (PCR) and live virus by culture for 28 days postvaccination. RESULTS: Shedding data were available from 621 initially reverse-transcription PCR-negative infants (91 mOPV2, 265 nOPV2-c1, 265 nOPV2-c2 recipients). Seven days after dose 1, 64.3% of mOPV2 recipients and 31.3%-48.5% of nOPV2 recipients across groups shed infectious type 2 virus. Respective rates 7 days after dose 2 decreased to 33.3% and 12.9%-22.7%, showing induction of intestinal immunity. Shedding of both nOPV2 candidates ceased at similar or faster rates than mOPV2. CONCLUSIONS: Viral shedding of either nOPV candidate was similar or decreased relative to mOPV2, and all vaccines showed indications that the vaccine virus was replicating sufficiently to induce primary intestinal mucosal immunity.


Asunto(s)
Poliomielitis , Poliovirus , Anticuerpos Antivirales , Humanos , Lactante , Vacuna Antipolio de Virus Inactivados , Vacuna Antipolio Oral , Ensayos Clínicos Controlados Aleatorios como Asunto , Vacunas Atenuadas
12.
NPJ Vaccines ; 6(1): 94, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326330

RESUMEN

Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.

13.
Risk Anal ; 41(2): 329-348, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33174263

RESUMEN

Delays in achieving the global eradication of wild poliovirus transmission continue to postpone subsequent cessation of all oral poliovirus vaccine (OPV) use. Countries must stop OPV use to end all cases of poliomyelitis, including vaccine-associated paralytic polio (VAPP) and cases caused by vaccine-derived polioviruses (VDPVs). The Global Polio Eradication Initiative (GPEI) coordinated global cessation of all type 2 OPV (OPV2) use in routine immunization in 2016 but did not successfully end the transmission of type 2 VDPVs (VDPV2s), and consequently continues to use type 2 OPV (OPV2) for outbreak response activities. Using an updated global poliovirus transmission and OPV evolution model, we characterize outbreak response options for 2019-2029 related to responding to VDPV2 outbreaks with a genetically stabilized novel OPV (nOPV2) strain or with the currently licensed monovalent OPV2 (mOPV2). Given uncertainties about the properties of nOPV2, we model different assumptions that appear consistent with the evidence on nOPV2 to date. Using nOPV2 to respond to detected cases may reduce the expected VDPV and VAPP cases and the risk of needing to restart OPV2 use in routine immunization compared to mOPV2 use for outbreak response. The actual properties, availability, and use of nOPV2 will determine its effects on type 2 poliovirus transmission in populations. Even with optimal nOPV2 performance, countries and the GPEI would still likely need to restart OPV2 use in routine immunization in OPV-using countries if operational improvements in outbreak response to stop the transmission of cVDPV2s are not implemented effectively.


Asunto(s)
Erradicación de la Enfermedad/métodos , Brotes de Enfermedades/prevención & control , Poliomielitis/prevención & control , Vacuna Antipolio Oral , Poliovirus/inmunología , Medición de Riesgo/métodos , Salud Global , Humanos , Modelos Teóricos , Poliomielitis/epidemiología , Probabilidad , Riesgo , Gestión de Riesgos , Serogrupo , Vacunación
14.
Lancet ; 397(10268): 27-38, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33308427

RESUMEN

BACKGROUND: Continued emergence and spread of circulating vaccine-derived type 2 polioviruses and vaccine-associated paralytic poliomyelitis from Sabin oral poliovirus vaccines (OPVs) has stimulated development of two novel type 2 OPV candidates (OPV2-c1 and OPV2-c2) designed to have similar immunogenicity, improved genetic stability, and less potential to reacquire neurovirulence. We aimed to assess safety and immunogenicity of the two novel OPV candidates compared with a monovalent Sabin OPV in children and infants. METHODS: We did two single-centre, multi-site, partly-masked, randomised trials in healthy cohorts of children (aged 1-4 years) and infants (aged 18-22 weeks) in Panama: a control phase 4 study with monovalent Sabin OPV2 before global cessation of monovalent OPV2 use, and a phase 2 study with low and high doses of two novel OPV2 candidates. All participants received one OPV2 vaccination and subsets received two doses 28 days apart. Parents reported solicited and unsolicited adverse events. Type 2 poliovirus neutralising antibodies were measured at days 0, 7, 28, and 56, and stool viral shedding was assessed up to 28 days post-vaccination. Primary objectives were to assess safety in all participants and non-inferiority of novel OPV2 day 28 seroprotection versus monovalent OPV2 in infants (non-inferiority margin 10%). These studies were registered with ClinicalTrials.gov, NCT02521974 and NCT03554798. FINDINGS: The control study took place between Oct 23, 2015, and April 29, 2016, and the subsequent phase 2 study between Sept 19, 2018, and Sept 30, 2019. 150 children (50 in the control study and 100 of 129 assessed for eligibility in the novel OPV2 study) and 684 infants (110 of 114 assessed for eligibility in the control study and 574 of 684 assessed for eligibility in the novel OPV2 study) were enrolled and received at least one study vaccination. Vaccinations were safe and well tolerated with no causally associated serious adverse events or important medical events in any group. Solicited and unsolicited adverse events were overwhelmingly mild or moderate irrespective of vaccine or dose. Nearly all children were seroprotected at baseline, indicating high baseline immunity. In children, the seroprotection rate 28 days after one dose was 100% for monovalent OPV2 and both novel OPV2 candidates. In infants at day 28, 91 (94% [95% CI 87-98]) of 97 were seroprotected after receiving monovalent OPV2, 134 (94% [88-97]) of 143 after high-dose novel OPV2-c1, 122 (93% [87-97]) of 131 after low-dose novel OPV2-c1, 138 (95% [90-98]) of 146 after high-dose novel OPV2-c2, and 115 (91% [84-95]) of 127 after low-dose novel OPV2-c2. Non-inferiority was shown for low-dose and high-dose novel OPV2-c1 and high-dose novel OPV2-c2 despite monovalent OPV2 recipients having higher baseline immunity. INTERPRETATION: Both novel OPV2 candidates were safe, well tolerated, and immunogenic in children and infants. Novel OPV2 could be an important addition to our resources against poliovirus given the current epidemiological situation. FUNDING: Fighting Infectious Diseases in Emerging Countries and Bill & Melinda Gates Foundation.


Asunto(s)
Seguridad del Paciente , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio Oral/administración & dosificación , Poliovirus/inmunología , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Preescolar , Femenino , Humanos , Esquemas de Inmunización , Lactante , Masculino , Panamá , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio Oral/inmunología , Vacunación , Esparcimiento de Virus/inmunología
15.
Lancet ; 397(10268): 39-50, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33308429

RESUMEN

BACKGROUND: Two novel type 2 oral poliovirus vaccine (OPV2) candidates, novel OPV2-c1 and novel OPV2-c2, designed to be more genetically stable than the licensed Sabin monovalent OPV2, have been developed to respond to ongoing polio outbreaks due to circulating vaccine-derived type 2 polioviruses. METHODS: We did two randomised studies at two centres in Belgium. The first was a phase 4 historical control study of monovalent OPV2 in Antwerp, done before global withdrawal of OPV2, and the second was a phase 2 study in Antwerp and Ghent with novel OPV2-c1 and novel OPV2-c2. Eligible participants were healthy adults aged 18-50 years with documented history of at least three polio vaccinations, including OPV in the phase 4 study and either OPV or inactivated poliovirus vaccine (IPV) in the novel OPV2 phase 2 study, with no dose within 12 months of study start. In the historical control trial, participants were randomly assigned to either one dose or two doses of monovalent OPV2. In the novel OPV2 trial, participants with previous OPV vaccinations were randomly assigned to either one or two doses of novel OPV2-c1 or to one or two doses of novel OPV2-c2. IPV-vaccinated participants were randomly assigned to receive two doses of either novel OPV2-c1, novel OPV2-c2, or placebo. Vaccine administrators were unmasked to treatment; medical staff performing safety and reactogenicity assessments or blood draws for immunogenicity assessments were masked. Participants received the first vaccine dose on day 0, and a second dose on day 28 if assigned to receive a second dose. Primary objectives were assessments and comparisons of safety up to 28 days after each dose, including solicited adverse events and serious adverse events, and immunogenicity (seroprotection rates on day 28 after the first vaccine dose) between monovalent OPV2 and the two novel OPV2 candidates. Primary immunogenicity analyses were done in the per-protocol population. Safety was assessed in the total vaccinated population-ie, all participants who received at least one dose of their assigned vaccine. The phase 4 control study is registered with EudraCT (2015-003325-33) and the phase 2 novel OPV2 study is registered with EudraCT (2018-001684-22) and ClinicalTrials.gov (NCT04544787). FINDINGS: In the historical control study, between Jan 25 and March 18, 2016, 100 volunteers were enrolled and randomly assigned to receive one or two doses of monovalent OPV2 (n=50 in each group). In the novel OPV2 study, between Oct 15, 2018, and Feb 27, 2019, 200 previously OPV-vaccinated volunteers were assigned to the four groups to receive one or two doses of novel OPV2-c1 or novel OPV2-c2 (n=50 per group); a further 50 participants, previously vaccinated with IPV, were assigned to novel OPV2-c1 (n=17), novel OPV2-c2 (n=16), or placebo (n=17). All participants received the first dose of assigned vaccine or placebo and were included in the total vaccinated population. All vaccines appeared safe; no definitely vaccine-related withdrawals or serious adverse events were reported. After first doses in previously OPV-vaccinated participants, 62 (62%) of 100 monovalent OPV2 recipients, 71 (71%) of 100 recipients of novel OPV2-c1, and 74 (74%) of 100 recipients of novel OPV2-c2 reported solicited systemic adverse events, four (monovalent OPV2), three (novel OPV2-c1), and two (novel OPV2-c2) of which were considered severe. In IPV-vaccinated participants, solicited adverse events occurred in 16 (94%) of 17 who received novel OPV2-c1 (including one severe) and 13 (81%) of 16 who received novel OPV2-c2 (including one severe), compared with 15 (88%) of 17 placebo recipients (including two severe). In previously OPV-vaccinated participants, 286 (97%) of 296 were seropositive at baseline; after one dose, 100% of novel OPV2 vaccinees and 97 (97%) of monovalent OPV2 vaccinees were seropositive. INTERPRETATION: Novel OPV2 candidates were as safe, well tolerated, and immunogenic as monovalent OPV2 in previously OPV-vaccinated and IPV-vaccinated adults. These data supported the further assessment of the vaccine candidates in children and infants. FUNDING: University of Antwerp and Bill & Melinda Gates Foundation.


Asunto(s)
Inmunogenicidad Vacunal , Poliomielitis/prevención & control , Vacuna Antipolio Oral/efectos adversos , Vacuna Antipolio Oral/inmunología , Poliovirus , Adulto , Bélgica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Poliovirus/genética , Poliovirus/inmunología , Vacuna Antipolio Oral/administración & dosificación , Vacunación
16.
Emerg Infect Dis ; 26(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32833616

RESUMEN

Acute flaccid myelitis (AFM) is a serious neurologic condition that causes limb weakness or paralysis in previously healthy children. Since clusters of cases were first reported in 2014, nationwide surveillance has demonstrated sharp increases in AFM cases in the United States every 2 years, most occurring during late summer and early fall. Given this current biennial pattern, another peak AFM season is expected during fall 2020 in the United States. Scientific understanding of the etiology and the factors driving the biennial increases in AFM has advanced rapidly in the past few years, although areas of uncertainty remain. The Centers for Disease Control and Prevention and AFM partners are focused on answering key questions about AFM epidemiology and mechanisms of disease. This article summarizes the current understanding of AFM etiology and outlines priorities for surveillance and research as we prepare for a likely surge in cases in 2020.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Enterovirus Humano D , Infecciones por Enterovirus , Mielitis , Niño , Enterovirus Humano D/genética , Infecciones por Enterovirus/epidemiología , Humanos , Mielitis/epidemiología , Mielitis/etiología , Enfermedades Neuromusculares , Estados Unidos/epidemiología
17.
NPJ Vaccines ; 5(1): 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32218998

RESUMEN

Enormous progress has been made in global efforts to eradicate poliovirus, using live-attenuated Sabin oral poliovirus vaccine (OPV). However, as the incidence of disease due to wild poliovirus has declined, vaccine-derived poliovirus (VDPV) has emerged in areas of low-vaccine coverage. Coordinated global cessation of routine, type 2 Sabin OPV (OPV2) use has not resulted in fewer VDPV outbreaks, and continued OPV use in outbreak-response campaigns has seeded new emergences in low-coverage areas. The limitations of existing vaccines and current eradication challenges warranted development of more genetically stable OPV strains, most urgently for OPV2. Here, we report using codon deoptimization to further attenuate Sabin OPV2 by changing preferred codons across the capsid to non-preferred, synonymous codons. Additional modifications to the 5' untranslated region stabilized known virulence determinants. Testing of this codon-deoptimized new OPV2 candidate (nOPV2-CD) in cell and animal models demonstrated that nOPV2-CD is highly attenuated, grows sufficiently for vaccine manufacture, is antigenically indistinguishable from Sabin OPV2, induces neutralizing antibodies as effectively as Sabin OPV2, and unlike Sabin OPV2 is genetically stable and maintains an attenuation phenotype. In-human clinical trials of nOPV2-CD are ongoing, with potential for nOPV strains to serve as critical vaccine tools for achieving and maintaining polio eradication.

18.
Nat Med ; 25(11): 1748-1752, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31636453

RESUMEN

Since 2012, the United States of America has experienced a biennial spike in pediatric acute flaccid myelitis (AFM)1-6. Epidemiologic evidence suggests non-polio enteroviruses (EVs) are a potential etiology, yet EV RNA is rarely detected in cerebrospinal fluid (CSF)2. CSF from children with AFM (n = 42) and other pediatric neurologic disease controls (n = 58) were investigated for intrathecal antiviral antibodies, using a phage display library expressing 481,966 overlapping peptides derived from all known vertebrate and arboviruses (VirScan). Metagenomic next-generation sequencing (mNGS) of AFM CSF RNA (n = 20 cases) was also performed, both unbiased sequencing and with targeted enrichment for EVs. Using VirScan, the viral family significantly enriched by the CSF of AFM cases relative to controls was Picornaviridae, with the most enriched Picornaviridae peptides belonging to the genus Enterovirus (n = 29/42 cases versus 4/58 controls). EV VP1 ELISA confirmed this finding (n = 22/26 cases versus 7/50 controls). mNGS did not detect additional EV RNA. Despite rare detection of EV RNA, pan-viral serology frequently identified high levels of CSF EV-specific antibodies in AFM compared with controls, providing further evidence for a causal role of non-polio EVs in AFM.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/genética , Infecciones por Enterovirus/genética , Enterovirus/genética , Mielitis/genética , Enfermedades Neuromusculares/genética , Estudios Seroepidemiológicos , Anticuerpos Antivirales/líquido cefalorraquídeo , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Enfermedades Virales del Sistema Nervioso Central/líquido cefalorraquídeo , Enfermedades Virales del Sistema Nervioso Central/epidemiología , Enfermedades Virales del Sistema Nervioso Central/virología , Preescolar , Enterovirus/patogenicidad , Infecciones por Enterovirus/líquido cefalorraquídeo , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Femenino , Humanos , Lactante , Masculino , Mielitis/líquido cefalorraquídeo , Mielitis/epidemiología , Mielitis/virología , Enfermedades Neuromusculares/líquido cefalorraquídeo , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/virología , Estados Unidos
19.
mBio ; 10(4)2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409689

RESUMEN

Acute flaccid myelitis (AFM) has caused motor paralysis in >560 children in the United States since 2014. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in >90% of cases suggest a role for infectious agents. Cerebrospinal fluid (CSF) from 14 AFM and 5 non-AFM patients with central nervous system (CNS) diseases in 2018 were investigated by viral-capture high-throughput sequencing (VirCapSeq-VERT system). These CSF and serum samples, as well as multiple controls, were tested for antibodies to human EVs using peptide microarrays. EV RNA was confirmed in CSF from only 1 adult AFM case and 1 non-AFM case. In contrast, antibodies to EV peptides were present in CSF of 11 of 14 AFM patients (79%), significantly higher than controls, including non-AFM patients (1/5 [20%]), children with Kawasaki disease (0/10), and adults with non-AFM CNS diseases (2/11 [18%]) (P = 0.023, 0.0001, and 0.0028, respectively). Six of 14 CSF samples (43%) and 8 of 11 sera (73%) from AFM patients were immunoreactive to an EV-D68-specific peptide, whereas the three control groups were not immunoreactive in either CSF (0/5, 0/10, and 0/11; P = 0.008, 0.0003, and 0.035, respectively) or sera (0/2, 0/8, and 0/5; P = 0.139, 0.002, and 0.009, respectively).IMPORTANCE The presence in cerebrospinal fluid of antibodies to EV peptides at higher levels than non-AFM controls supports the plausibility of a link between EV infection and AFM that warrants further investigation and has the potential to lead to strategies for diagnosis and prevention of disease.


Asunto(s)
Anticuerpos Antivirales/líquido cefalorraquídeo , Enfermedades Virales del Sistema Nervioso Central/líquido cefalorraquídeo , Enterovirus Humano D/inmunología , Enterovirus Humano D/aislamiento & purificación , Infecciones por Enterovirus/líquido cefalorraquídeo , Mielitis/líquido cefalorraquídeo , Enfermedades Neuromusculares/líquido cefalorraquídeo , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Enfermedades Virales del Sistema Nervioso Central/sangre , Niño , Enterovirus Humano D/genética , Infecciones por Enterovirus/sangre , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mielitis/sangre , Enfermedades Neuromusculares/sangre , Análisis por Matrices de Proteínas , ARN Viral/sangre , ARN Viral/líquido cefalorraquídeo , ARN Viral/genética , Adulto Joven
20.
MMWR Morb Mortal Wkly Rep ; 68(27): 608-614, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31295232

RESUMEN

BACKGROUND: Acute flaccid myelitis (AFM), a serious paralytic illness, was first recognized as a distinct condition in 2014, when cases were reported concurrent with a large U.S. outbreak of severe respiratory illness caused by enterovirus D-68 (EV-D68). Since 2014, nationwide outbreaks of AFM have occurred every 2 years in the United States; the cause for the recent change in the epidemiology of AFM in the United States, including the occurrence of outbreaks and a biennial periodicity since 2014, is under investigation. This report updates clinical, laboratory, and outcome data for cases reported to CDC during 2018. METHODS: Clinical data and specimens from persons in the United States who met the clinical criterion for AFM (acute onset of flaccid limb weakness) with onset in 2018 were submitted to CDC for classification of the illnesses as confirmed, probable, or non-AFM cases. Enterovirus/rhinovirus (EV/RV) testing was performed on available specimens from persons meeting the clinical criterion. Descriptive analyses, laboratory results, and indicators of early recognition and reporting are summarized. RESULTS: From January through December 2018, among 374 reported cases of AFM, 233 (62%) (from 41 states) were classified as confirmed, 26 (7%) as probable, and 115 (31%) as non-AFM cases. Median ages of patients with confirmed, probable, and non-AFM cases were 5.3, 2.9, and 8.8 years, respectively. Laboratory testing identified multiple EV/RV types, primarily in respiratory and stool specimens, in 44% of confirmed cases. Among confirmed cases, the interval from onset of limb weakness until specimen collection ranged from 2 to 7 days, depending on specimen type. Interval from onset of limb weakness until reporting to CDC during 2018 ranged from 18 to 36 days, with confirmed and probable cases reported earlier than non-AFM cases. CONCLUSION: Identification of risk factors leading to outbreaks of AFM remains a public health priority. Prompt recognition of signs and symptoms, early specimen collection, and complete and rapid reporting will expedite public health investigations and research studies to elucidate the recent epidemiology of AFM and subsequently inform treatment and prevention recommendations.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Mielitis/epidemiología , Enfermedades Neuromusculares/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Centers for Disease Control and Prevention, U.S. , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Factores de Riesgo , Estaciones del Año , Estados Unidos/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...