Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568859

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.


Asunto(s)
Hormonas Juveniles , Metamorfosis Biológica , Animales , Metamorfosis Biológica/fisiología , Insectos , Morfogénesis
2.
Biogerontology ; 25(2): 205-226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37610666

RESUMEN

Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.


Asunto(s)
Telomerasa , Animales , Humanos , Telomerasa/genética , Envejecimiento/genética , Longevidad , Evolución Biológica , Telómero
3.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37873170

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.

4.
Front Zool ; 20(1): 29, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37641135

RESUMEN

BACKGROUND: For decoding the mechanism of how cells and organs function information on their ultrastructure is essential. High-resolution 3D imaging has revolutionized morphology. Serial block face scanning electron microscopy (SBF-SEM) offers non-laborious, automated imaging in 3D of up to ~ 1 mm3 large biological objects at nanometer-scale resolution. For many samples there are obstacles. Quality imaging is often hampered by charging effects, which originate in the nonconductive resin used for embedding. Especially, if the imaged region of interest (ROI) includes the surface of the sample and neighbours the empty resin, which insulates the object. This extra resin also obscures the sample's morphology, thus making navigation to the ROI difficult. RESULTS: Using the example of small arthropods and a fish roe we describe a workflow to prepare samples for SBF-SEM using the minimal resin (MR) embedding method. We show that for imaging of surface structures this simple approach conveniently tackles and solves both of the two major problems-charging and ROI localization-that complicate imaging of SBF-SEM samples embedded in an excess of overlying resin. As the surface ROI is not masked by the resin, samples can be precisely trimmed before they are placed into the imaging chamber. The initial approaching step is fast and easy. No extra trimming inside the microscope is necessary. Importantly, charging is absent or greatly reduced meaning that imaging can be accomplished under good vacuum conditions, typically at the optimal high vacuum. This leads to better resolution, better signal to noise ratio, and faster image acquisition. CONCLUSIONS: In MR embedded samples charging is minimized and ROI easily targeted. MR embedding does not require any special equipment or skills. It saves effort, microscope time and eventually leads to high quality data. Studies on surface-linked ROIs, or any samples normally surrounded by the excess of resin, would benefit from adopting the technique.

5.
J Insect Physiol ; 146: 104504, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36935036

RESUMEN

The anatomical, physiological, and behavioral characteristics of honey bees are affected by the season as well as division of labor. In this study, we examined the structure, ultrastructure, and gene expression of fat body cells in both long-lived winter and short-lived summer worker bees (the youngest stage of hive bees and forager bees). In contrast to hive bees, foragers and winter bees have a higher metabolism due to intensive muscle activity during their flight (foragers) or endothermic heat production (winter bees). These workers differ from hive bees in the biology of their mitochondria, peroxisomes, and lysosomes as well as in the expression of the genes involved in lipid, carbohydrate, amino acid metabolism, insulin, and TGF- ß signaling. Additionally, the expression of genes related to phospholipid metabolism was higher in the hive bees. However, we found no differences between workers in the expression of genes controlling cell organelles, such as the Golgi apparatus, endoplasmic reticulum, ribosomes, nucleus, and vacuoles, as well as genes for DNA replication, cell cycle control, and autophagy. Furthermore, lysosomes, autophagic processes and lipofuscin particles were more frequently observed in winter bees using electron microscopy.


Asunto(s)
Abejas , Expresión Génica , Animales , Abejas/genética , Abejas/ultraestructura , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/ultraestructura , Estaciones del Año
6.
Front Zool ; 17: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31969926

RESUMEN

BACKGROUND: Pleuropodia are limb-derived glandular organs that transiently appear on the first abdominal segment in embryos of insects from majority of "orders". They are missing in the genetic model Drosophila and little is known about them. Experiments carried out on orthopteran insects 80 years ago indicated that the pleuropodia secrete a "hatching enzyme" that digests the serosal cuticle to enable the larva to hatch, but evidence by state-of-the-art molecular methods is missing. RESULTS: We used high-throughput RNA-sequencing to identify the genes expressed in the pleuropodia of the locust Schistocerca gregaria (Orthoptera). First, using transmission electron microscopy we studied the development of the pleuropodia during 11 stages of the locust embryogenesis. We show that the glandular cells differentiate and start secreting just before the definitive dorsal closure of the embryo and the secretion granules outside the cells become more abundant prior to hatching. Next, we generated a comprehensive embryonic reference transcriptome for the locust and used it to study genome wide gene expression across ten morphologicaly defined stages of the pleuropodia. We show that when the pleuropodia have morphological markers of functional organs and produce secretion, they are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. Unexpected finding was the enrichment in transcripts for immunity-related enzymes. This indicates that the pleuropodia are equipped with epithelial immunity similarly as barrier epithelia in postembryonic stages. CONCLUSIONS: These data provide transcriptomic support for the historic hypothesis that pleuropodia produce cuticle-degrading enzymes and function in hatching. They may also have other functions, such as facilitation of embryonic immune defense. By the genes that they express the pleuropodia are specialized embryonic organs and apparently an important though neglected part of insect physiology.

7.
J Exp Biol ; 222(Pt 10)2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31053649

RESUMEN

Springtails (Collembola) are ancient close relatives of the insects. The eversible vesicles are their unique paired transporting organs, which consist of an epithelium located inside a tube-like structure called the collophore on the first abdominal segment. The vesicles can be protruded out of the collophore and several lines of evidence indicate that they have a vital function in water uptake and ion balance. However, the amount of water absorbed by the vesicles and which other ions apart from Na+ are transported remain unknown. Using Orchesella cincta as a model, we developed protocols for two assays that enabled us to study water and ion movement across the eversible vesicles in whole living springtails. Using an inverse Ramsay assay we demonstrate that the eversible vesicles absorb water from a droplet applied onto their surface. Using the scanning ion-selective electrode technique (SIET), we show that the vesicles absorb Na+ and Cl- from the bathing medium, secrete NH4+, and both absorb and secrete K+ H+ is secreted at a low level in the anterior part and absorbed at the posterior part. We did not detect transport of Ca2+ at significant levels. The highest flux was the absorption of Cl-, and the magnitude of ion fluxes was significantly lower in fully hydrated springtails. Our data demonstrate that the eversible vesicles are a transporting epithelium functioning in osmo- and ionoregulation, nitrogenous waste excretion and probably also acid-base balance.


Asunto(s)
Artrópodos/metabolismo , Transporte Iónico , Equilibrio Hidroelectrolítico , Agua/metabolismo , Animales , Femenino , Masculino
8.
Evodevo ; 5(1): 2, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24398075

RESUMEN

BACKGROUND: In Drosophila and many other insects, the Hox genes Ultrabithorax (Ubx) and abdominal-A (abd-A) suppress limb formation on most or all segments of the abdomen. However, a number of basal hexapod lineages retain multiple appendages on the abdomen. In the collembolans or springtails, three abdominal segments develop specialized organs that originate from paired appendage primordia which fuse at the midline: the first abdominal segment bears the collophore (ventral tube), involved in osmoregulation; the fourth segment bears the furca, the leaping organ, and the third segment bears the retinaculum, which retains the furca at rest. Ubx and abd-A are known to be expressed in the springtail abdomen, but what role they play in specifying these distinct abdominal appendages is not known. This is largely because no genetic model has been established in collembolans or any other non-insect hexapod. RESULTS: We have developed a convenient method for laboratory culture of the collembolan Orchesella cincta on defined media, a method for in-situ hybridization to embryos and a procedure for gene knockdown by parental injection of double-stranded RNA (RNAi). We show that Orchesella Ubx transcripts are detectable in the first to third abdominal segments, and abd-A transcripts in the second to fourth segments. Knockdown of Oc-Ubx leads to the homeotic transformation of the collophore into a pair of walking legs (a more anterior identity) but the retinaculum into a furca (a more posterior identity). Knockdown of Oc-abd-A leads to the transformation of the retinaculum into a collophore and of the furca into legs (both anterior transformations). Simultaneous silencing of both Oc-Ubx and Oc-abd-A transformed all three of these appendages into paired legs, but did not cause appendages to develop on the second, or on the most posterior abdominal segments. CONCLUSIONS: We conclude that, in Orchesella, Oc-Ubx alone specifies the collophore on the first and Oc-abd-A alone specifies the furca on the fourth abdominal segment. Oc-Ubx and Oc-abd-A function together, apparently combinatorially, to specify the retinaculum on the third segment. The efficiency of RNAi in Orchesella makes this an attractive model for further genetic studies of development and physiology in basal hexapods.

9.
PLoS One ; 6(12): e28728, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174880

RESUMEN

Insect larvae metamorphose to winged and reproductive adults either directly (hemimetaboly) or through an intermediary pupal stage (holometaboly). In either case juvenile hormone (JH) prevents metamorphosis until a larva has attained an appropriate phase of development. In holometabolous insects, JH acts through its putative receptor Methoprene-tolerant (Met) to regulate Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) genes. While Met and Kr-h1 prevent precocious metamorphosis in pre-final larval instars, BR-C specifies the pupal stage. How JH signaling operates in hemimetabolous insects is poorly understood. Here, we compare the function of Met, Kr-h1 and BR-C genes in the two types of insects. Using systemic RNAi in the hemimetabolous true bug, Pyrrhocoris apterus, we show that Met conveys the JH signal to prevent premature metamorphosis by maintaining high expression of Kr-h1. Knockdown of either Met or Kr-h1 (but not of BR-C) in penultimate-instar Pyrrhocoris larvae causes precocious development of adult color pattern, wings and genitalia. A natural fall of Kr-h1 expression in the last larval instar normally permits adult development, and treatment with an exogenous JH mimic methoprene at this time requires both Met and Kr-h1 to block the adult program and induce an extra larval instar. Met and Kr-h1 therefore serve as JH-dependent repressors of deleterious precocious metamorphic changes in both hemimetabolous and holometabolous juveniles, whereas BR-C has been recruited for a new role in specifying the holometabolous pupa. These results show that despite considerable evolutionary distance, insects with diverse developmental strategies employ a common-core JH signaling pathway to commit to adult morphogenesis.


Asunto(s)
Genes de Insecto/genética , Insectos/crecimiento & desarrollo , Insectos/genética , Hormonas Juveniles/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Estadios del Ciclo de Vida/genética , Transducción de Señal/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Secuencia Conservada/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Insectos/efectos de los fármacos , Larva/efectos de los fármacos , Larva/genética , Modelos Biológicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Development ; 135(3): 559-68, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18171683

RESUMEN

Metamorphosis of holometabolous insects, an elaborate change of form between larval, pupal and adult stages, offers an ideal system to study the regulation of morphogenetic processes by hormonal signals. Metamorphosis involves growth and differentiation, tissue remodeling and death, all of which are orchestrated by the morphogenesis-promoting ecdysteroids and the antagonistically acting juvenile hormone (JH), whose presence precludes the metamorphic changes. How target tissues interpret this combinatorial effect of the two hormonal cues is poorly understood, mainly because JH does not prevent larval-pupal transformation in the derived Drosophila model, and because the JH receptor is unknown. We have recently used the red flour beetle Tribolium castaneum to show that JH controls entry to metamorphosis via its putative receptor Methoprene-tolerant (Met). Here, we demonstrate that Met mediates JH effects on the expression of the ecdysteroid-response gene Broad-Complex (BR-C). Using RNAi and a classical mutant, we show that Tribolium BR-C is necessary for differentiation of pupal characters. Furthermore, heterochronic combinations of retarded and accelerated phenotypes caused by impaired BR-C function suggest that besides specifying the pupal fate, BR-C operates as a temporal coordinator of hormonally regulated morphogenetic events across epidermal tissues. Similar results were also obtained when using the lacewing Chrysopa perla (Neuroptera), a member of another holometabolous group with a primitive type of metamorphosis. The tissue coordination role of BR-C may therefore be a part of the Holometabola groundplan.


Asunto(s)
Escarabajos/crecimiento & desarrollo , Escarabajos/metabolismo , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Metamorfosis Biológica , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Escarabajos/ultraestructura , Secuencia Conservada , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/química , Proteínas de Insectos/genética , Larva/ultraestructura , Modelos Biológicos , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pupa/ultraestructura , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética , Tribolium/crecimiento & desarrollo , Tribolium/ultraestructura
12.
Proc Natl Acad Sci U S A ; 104(25): 10488-93, 2007 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-17537916

RESUMEN

Besides being a spectacular developmental process, metamorphosis is key to insect success. Entry into metamorphosis is controlled by juvenile hormone (JH). In larvae, JH prevents pupal and adult morphogenesis, thus keeping the insect in its immature state. How JH signals to preclude metamorphosis is poorly understood, and a JH receptor remains unknown. One candidate for the JH receptor role is the Methoprene-tolerant (Met) Per-Arnt-Sim (PAS) domain protein [also called Resistance to JH, Rst (1)JH], whose loss confers tolerance to JH and its mimic methoprene in the fruit fly Drosophila melanogaster. However, Met deficiency does not affect the larval-pupal transition, possibly because this process does not require JH absence in Drosophila. By contrast, the red flour beetle Tribolium castaneum is sensitive to developmental regulation by JH, thus making an ideal system to examine the role of Met in the antimetamorphic JH action. Here we show that impaired function of the Met ortholog TcMet renders Tribolium resistant to the effects of ectopic JH and, in a striking contrast to Drosophila, causes early-stage beetle larvae to undergo precocious metamorphosis. This is evident as TcMet-deficient larvae pupate prematurely or develop specific heterochronic phenotypes such as pupal-like cuticular structures, appendages, and compound eyes. Our results demonstrate that TcMet functions in JH response and provide the critical evidence that the putative JH receptor Met mediates the antimetamorphic effect of JH.


Asunto(s)
Genes de Insecto , Resistencia a los Insecticidas/genética , Metamorfosis Biológica/genética , Metopreno/farmacología , Tribolium/genética , Animales , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/ultraestructura , Datos de Secuencia Molecular , Pupa/efectos de los fármacos , Pupa/crecimiento & desarrollo , Pupa/ultraestructura , Interferencia de ARN , ARN Mensajero/análisis , Tribolium/crecimiento & desarrollo
13.
J Morphol ; 264(3): 339-62, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15838850

RESUMEN

Ultrastructure and deposition of the cuticles secreted by embryos representing eight insect orders were examined by transmission and scanning electron microscopy. Embryos of the apterygote silverfish Thermobia domestica deposit two embryonic cuticles. Deposition of the first (EC1) is initiated at the beginning of appendage development when the intercalary segment and the neural groove are clearly visible. This cuticle lacks surface microsculpture and consists of an outer epicuticle and an underlying fibrous layer, thought to represent procuticle. At the time of dorsal closure, deposition of a second embryonic cuticle (EC2) begins; this bears sensilla and functions in the first instar larva. In representative embryos of seven pterygote orders (Ephemeroptera, Odonata, Plecoptera, Neuroptera, Coleoptera, Lepidoptera, and Mecoptera), three cuticles were found to be secreted. The first cuticle in pterygotes is homologous to EC1 of T. domestica, but consists solely of outer epicuticle. EC2, the "prolarval cuticle," bears a characteristic surface microsculpture in embryos of some species and egg-teeth and other hatching devices, and consists of outer and inner epicuticles and a more or less reduced procuticle. EC2 is reduced in the embryos of derived endopterygotes, where a procuticle is lacking and the inner epicuticle is reduced. After hatching, when EC2 is shed, the first instar larva is covered by a third embryonic cuticle (EC3), whose deposition was initiated while the insect was still within the egg. Presence of only two embryonic cuticles in cyclorrhaphous flies is due to the total loss of prolarval cuticle. Investigated exopterygote and endopterygote insects excluding flies thus deposit three embryonic cuticles, and their juveniles (exopterygote "nymphs"; endopterygote "larvae") seem to hatch at equivalent stages of development. Differences between the modes of cuticulogenesis in silverfish and pterygote embryos suggest that the apterygote first larval instar was embryonized and became a fully embryonic prolarva in pterygotes.


Asunto(s)
Embrión no Mamífero/ultraestructura , Insectos/embriología , Animales , Evolución Biológica , Insectos/clasificación , Insectos/ultraestructura , Metamorfosis Biológica , Microscopía Electrónica de Rastreo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...