Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Gene ; 910: 148339, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438057

RESUMEN

Dominant missense variants in MYBPC1 encoding slow Myosin Binding Protein-C (sMyBP-C) have been increasingly linked to arthrogryposis syndromes and congenital myopathy with tremor. Herein, we describe novel compound heterozygous variants - NM_002465.4:[c.2486_2492del];[c.2663A > G] - present in fibronectin-III (Fn-III) C7 and immunoglobulin (Ig) C8 domains, respectively, manifesting as severe, early-onset distal arthrogryposis type-1, with the carrier requiring intensive care and several surgical interventions at an early age. Computational modeling predicts that the c.2486_2492del p.(Lys829IlefsTer7) variant destabilizes the structure of the Fn-III C7 domain, while the c.2663A > G p.(Asp888Gly) variant causes minimal structural alterations in the Ig C8 domain. Although the parents of the proband are heterozygous carriers for a single variant, they exhibit no musculoskeletal defects, suggesting a complex interplay between the two mutant alleles underlying this disorder. As emerging novel variants in MYBPC1 are shown to be causatively associated with musculoskeletal disease, it becomes clear that MYBPC1 should be included in relevant genetic screenings.


Asunto(s)
Artrogriposis , Enfermedades Musculares , Humanos , Artrogriposis/genética , Artrogriposis/metabolismo , Mutación Missense
2.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38127465

RESUMEN

Obscurins are giant cytoskeletal proteins with structural and regulatory roles. Obscurin-B (~870 kDa), the largest known isoform, contains 2 enzymatically active Ser/Thr kinase (kin) domains, kin1 and kin2, which belong to the myosin light chain kinase family. Kin1 binds to and phosphorylates N-cadherin, a major component of the intercalated disc, the unique sarcolemmal microdomain that mediates the mechanochemical coupling of adjacent cardiomyocytes. Obscurin-B containing kin1 and N-cadherin colocalize at cell junctions in embryonic rat ventricular myocytes (ERVMs), and their codistribution is regulated by Ca2+. Phosphoproteomics analysis revealed that obscurin-kin1 phosphorylates N-cadherin at Ser-788 located within the juxtamembrane region of its cytoplasmic domain, with an apparent Kcat of approximately 5.05 min-1. Overexpression of obscurin-kin1 or phosphomimic-Ser-788-Glu N-cadherin in ERVMs markedly increases cell adhesion and chemical coupling. Importantly, phosphomimic Ser-788-Glu N-cadherin exhibits significantly reduced binding to p120-catenin, while overexpression of phosphoablated Ser-788-Ala N-cadherin increases RhoA activity. Consistent with an essential role of the obscurin-kin1/N-cadherin axis in cardiomyocyte coupling, it is deregulated in end-stage human heart failure. Given the nearly ubiquitous expression of obscurin and N-cadherin, our findings may have broad applicability in deciphering the obscurin-kin1/N-cadherin axis that likely mediates cell coupling in diverse tissues and organs.


Asunto(s)
Cadherinas , Miocitos Cardíacos , Animales , Humanos , Ratas , Cadherinas/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo
3.
Front Cardiovasc Med ; 10: 1085840, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304957

RESUMEN

Introduction: Obscurin (720-870 kDa) is a giant cytoskeletal and signaling protein that possesses both structural and regulatory functions in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin bind to a diverse set of proteins that are essential for the proper structure and function of the heart, including giant titin, novex-3, and phospholamban (PLN). Importantly, the pathophysiological significance of the Ig58/59 module has been further underscored by the discovery of several mutations within Ig58/59 that are linked to various forms of myopathy in humans. We previously generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and characterized the effects of this deletion on cardiac morphology and function through aging. Our findings demonstrated that Obscn-ΔIg58/59 male animals develop severe arrhythmia, primarily manifesting as episodes of junctional escape and spontaneous loss of regular p-waves, reminiscent of human atrial fibrillation, accompanied by significant atrial enlargement that progresses in severity with aging. Methods and Results: To comprehensively characterize the molecular alterations responsible for these pathologies, we performed proteomic and phospho-proteomic analyses in aging Obscn-ΔIg58/59 atria. Our studies revealed extensive and novel alterations in the expression and phosphorylation profile of major cytoskeletal proteins, Ca2+ regulators, and Z-disk associated protein complexes in the Obscn-ΔIg58/59 atria through aging. Discussion: These studies implicate obscurin, particularly the Ig58/59 module, as an essential regulator of the Z-disk associated cytoskeleton and Ca2+ cycling in the atria and provide new molecular insights into the development of atrial fibrillation and remodeling.

4.
Proc Natl Acad Sci U S A ; 120(11): e2215553120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877839

RESUMEN

Mounting evidence implicates the giant, cytoskeletal protein obscurin (720 to 870 kDa), encoded by the OBSCN gene, in the predisposition and development of breast cancer. Accordingly, prior work has shown that the sole loss of OBSCN from normal breast epithelial cells increases survival and chemoresistance, induces cytoskeletal alterations, enhances cell migration and invasion, and promotes metastasis in the presence of oncogenic KRAS. Consistent with these observations, analysis of Kaplan-Meier Plotter datasets reveals that low OBSCN levels correlate with significantly reduced overall and relapse-free survival in breast cancer patients. Despite the compelling evidence implicating OBSCN loss in breast tumorigenesis and progression, its regulation remains elusive, limiting any efforts to restore its expression, a major challenge given its molecular complexity and gigantic size (~170 kb). Herein, we show that OBSCN-Antisense RNA 1 (OBSCN-AS1), a novel nuclear long-noncoding RNA (lncRNA) gene originating from the minus strand of OBSCN, and OBSCN display positively correlated expression and are downregulated in breast cancer biopsies. OBSCN-AS1 regulates OBSCN expression through chromatin remodeling involving H3 lysine 4 trimethylation enrichment, associated with open chromatin conformation, and RNA polymerase II recruitment. CRISPR-activation of OBSCN-AS1 in triple-negative breast cancer cells effectively and specifically restores OBSCN expression and markedly suppresses cell migration, invasion, and dissemination from three-dimensional spheroids in vitro and metastasis in vivo. Collectively, these results reveal the previously unknown regulation of OBSCN by an antisense lncRNA and the metastasis suppressor function of the OBSCN-AS1/OBSCN gene pair, which may be used as prognostic biomarkers and/or therapeutic targets for metastatic breast cancer.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , ARN Largo no Codificante/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Recurrencia Local de Neoplasia , Biopsia , Proteínas Serina-Treonina Quinasas , Factores de Intercambio de Guanina Nucleótido Rho
5.
Acta Neuropathol Commun ; 10(1): 185, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528760

RESUMEN

Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.


Asunto(s)
Miopatías Nemalínicas , Animales , Ratones , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Mutación/genética , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Miosinas/metabolismo , Proteoma/metabolismo
6.
Cancer Lett ; 526: 155-167, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826548

RESUMEN

Obscurins, encoded by the OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. Large scale omics analyses reveal that OBSCN is highly mutated across different types of cancer, exhibiting a 5-8% mutation frequency in pancreatic cancer. Yet, the functional role of OBSCN in pancreatic cancer progression and metastasis has to be delineated. We herein show that giant obscurins are highly expressed in normal pancreatic tissues, but their levels are markedly reduced in pancreatic ductal adenocarcinomas. Silencing of giant obscurins in non-tumorigenic Human Pancreatic Ductal Epithelial (HPDE) cells and obscurin-expressing Panc5.04 pancreatic cancer cells induces an elongated, spindle-like morphology and faster cell migration via cytoskeletal remodeling. Specifically, depletion of giant obscurins downregulates RhoA activity, which in turn results in reduced focal adhesion density, increased microtubule growth rate and faster actin dynamics. Although OBSCN knockdown is not sufficient to induce de novo tumorigenesis, it potentiates tumor growth in a subcutaneous implantation model and exacerbates metastasis in a hemispleen murine model of pancreatic cancer metastasis, thereby shortening survival. Collectively, these findings reveal a critical role of giant obscurins as tumor suppressors in normal pancreatic epithelium whose loss of function induces RhoA-dependent cytoskeletal remodeling, and promotes cell migration, tumor growth and metastasis.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología
7.
JCI Insight ; 6(19)2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437302

RESUMEN

Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.


Asunto(s)
Proteínas Portadoras/genética , Hipotonía Muscular/genética , Debilidad Muscular/genética , Músculo Esquelético/fisiopatología , Enfermedades Musculares/genética , Sarcómeros/genética , Temblor/genética , Animales , Femenino , Técnicas de Sustitución del Gen , Heterocigoto , Masculino , Ratones , Hipotonía Muscular/fisiopatología , Debilidad Muscular/fisiopatología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/fisiopatología , Mutación Missense , Pletismografía Total , Músculos Respiratorios/fisiopatología , Sarcómeros/metabolismo , Sarcómeros/fisiología , Sarcómeros/ultraestructura , Temblor/fisiopatología
8.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188567, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34015411

RESUMEN

Giant obscurins (720-870 kDa), encoded by OBSCN, were originally discovered in striated muscles as cytoskeletal proteins with scaffolding and regulatory roles. Recently though, they have risen to the spotlight as key players in cancer development and progression. Herein, we provide a timely prudent synopsis of the expanse of OBSCN mutations across 16 cancer types. Given the extensive work on OBSCN's role in breast epithelium, we summarize functional studies implicating obscurins as potent tumor suppressors in breast cancer and delve into an in silico analysis of its mutational profile and epigenetic (de)regulation using different dataset platforms and sophisticated computational tools. Lastly, we formally describe the OBSCN-Antisense-RNA-1 gene, which belongs to the long non-coding RNA family and discuss its potential role in modulating OBSCN expression in breast cancer. Collectively, we highlight the escalating involvement of obscurins in cancer biology and outline novel potential mechanisms of OBSCN (de)regulation that warrant further investigation.


Asunto(s)
Genes Supresores de Tumor , Mutación , Neoplasias/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Metilación de ADN , Epigénesis Genética , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/enzimología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/genética , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Transducción de Señal
9.
Basic Res Cardiol ; 115(6): 60, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32910221

RESUMEN

Obscurin comprises a family of giant modular proteins that play key structural and regulatory roles in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin mediate binding to essential modulators of muscle structure and function, including canonical titin, a smaller splice variant of titin, termed novex-3, and phospholamban (PLN). Importantly, missense mutations localized within the obscurin-Ig58/59 region that affect binding to titins and/or PLN have been linked to the development of myopathy in humans. To elucidate the pathophysiological role of this region, we generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and determined the consequences of this manipulation on cardiac morphology and function under conditions of acute stress and through the physiological process of aging. Our studies show that young Obscn-ΔIg58/59 mice are susceptible to acute ß-adrenergic stress. Moreover, sedentary Obscn-ΔIg58/59 mice develop left ventricular hypertrophy that progresses to dilation, contractile impairment, atrial enlargement, and arrhythmia as a function of aging with males being more affected than females. Experiments in ventricular cardiomyocytes revealed altered Ca2+ cycling associated with changes in the expression and/or phosphorylation levels of major Ca2+ cycling proteins, including PLN, SERCA2, and RyR2. Taken together, our work demonstrates that obscurin-Ig58/59 is an essential regulatory module in the heart and its deletion leads to age- and sex-dependent cardiac remodeling, ventricular dilation, and arrhythmia due to deregulated Ca2+ cycling.


Asunto(s)
Arritmias Cardíacas/enzimología , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/enzimología , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Factores de Intercambio de Guanina Nucleótido Rho/deficiencia , Disfunción Ventricular Izquierda/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Potenciales de Acción , Factores de Edad , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Femenino , Eliminación de Gen , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Dominios de Inmunoglobulinas , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Conducta Sedentaria , Factores Sexuales , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
10.
Biophys Rev ; 12(4): 1019-1029, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32638332

RESUMEN

Obscurin and its homolog, striated muscle preferentially expressed gene (SPEG), constitute a unique group of proteins abundantly expressed in striated muscles that contain two tandemly arranged MLCK-like kinases. The physiological significance of the dual kinase motifs is largely understudied; however, a collection of recent studies characterizing their binding interactions, putative targets, and disease-linked mutations have begun to shed light on their potential roles in muscle pathophysiology. Specifically, obscurin kinase 1 is proposed to regulate cardiomyocyte adhesion via phosphorylating N-cadherin, whereas SPEG kinases 1 and 2 regulate Ca2+ cycling by phosphorylating junctophilin-2 and the sarcoendoplasmic Ca2+ ATPase 2 (SERCA2). Herein, we review what is currently known regarding the potential substrates, physiological roles, and disease associations of obscurin and SPEG tandem kinase domains and provide future directions that have yet to be investigated.

11.
Front Physiol ; 11: 478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528308

RESUMEN

Obscurin is a giant cytoskeletal protein with structural and regulatory roles encoded by the OBSCN gene. Recently, mutations in OBSCN were associated with the development of different forms of cardiomyopathies, including hypertrophic cardiomyopathy (HCM). We previously reported that homozygous mice carrying the HCM-linked R4344Q obscurin mutation develop arrhythmia by 1-year of age under sedentary conditions characterized by increased heart rate, frequent incidents of premature ventricular contractions, and episodes of spontaneous ventricular tachycardia. In an effort to delineate the molecular mechanisms that contribute to the observed arrhythmic phenotype, we subjected protein lysates prepared from left ventricles of 1-year old R4344Q and wild-type mice to comparative proteomics analysis using tandem mass spectrometry; raw data are available via ProteomeXchange with identifier PXD017314. We found that the expression levels of proteins involved in cardiac function and disease, cytoskeletal organization, electropotential regulation, molecular transport and metabolism were significantly altered. Moreover, phospho-proteomic evaluation revealed changes in the phosphorylation profile of Ca2+ cycling proteins, including sAnk1.5, a major binding partner of obscurin localized in the sarcoplasmic reticulum; notably, this is the first report indicating that sAnk1 undergoes phosphorylation. Taken together, our findings implicate obscurin in diverse cellular processes within the myocardium, which is consistent with its multiple binding partners, localization in different subcellular compartments, and disease association.

12.
J Muscle Res Cell Motil ; 41(4): 285-295, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31620961

RESUMEN

Myopathies are a large and heterogeneous group of disorders associated with mutations in structural and regulatory genes responsible for proper muscle assembly, organization and function. Despite the molecular diversity of inherited myopathies, they have historically been classified by the phenotypic traits observed in affected patients. It is therefore common for myopathies originating from mutations in different genes to be grouped together due to similar physical manifestations, and conversely myopathies resulting from mutations in the same gene to be considered separately due to disparate symptoms. Herein, we focus on an early onset myopathy linked to inherited or de novo mutations in sarcomeric genes that is characterized by muscle weakness, hypotonia and tremor, and further highlight that it may constitute a new form of myopathy, with tremor as its defining feature. Based on recent reports, we also discuss the possible myogenic origin of the tremor that may start at the level of the sarcomere due to structural and/or contractile alterations occurring as a result of the identified mutations. It is our hope that establishment of this form of myopathy accompanied by myogenic tremor as a new disease entity will have important diagnostic and therapeutic implications.


Asunto(s)
Enfermedades Musculares/fisiopatología , Sarcómeros/patología , Temblor/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Porcinos
13.
Hum Mutat ; 40(8): 1115-1126, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31264822

RESUMEN

Encoding the slow skeletal muscle isoform of myosin binding protein-C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M-motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M-motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M-motif to myosin, which likely impairs the formation of actomyosin cross-bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early-onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.


Asunto(s)
Artrogriposis/genética , Proteínas Portadoras/genética , Mutación , Enfermedades Neuromusculares/genética , Secuenciación Completa del Genoma/métodos , Adulto , Proteínas Portadoras/química , Niño , Padre , Femenino , Humanos , Lactante , Masculino , Modelos Moleculares , Linaje , Fenotipo , Conformación Proteica
14.
Nat Biomed Eng ; 3(6): 452-465, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061459

RESUMEN

The challenge of predicting which patients with breast cancer will develop metastases leads to the overtreatment of patients with benign disease and to the inadequate treatment of aggressive cancers. Here, we report the development and testing of a microfluidic assay that quantifies the abundance and proliferative index of migratory cells in breast cancer specimens, for the assessment of their metastatic propensity and for the rapid screening of potential antimetastatic therapeutics. On the basis of the key roles of cell motility and proliferation in cancer metastasis, the device accurately predicts the metastatic potential of breast cancer cell lines and of patient-derived xenografts. Compared with unsorted cancer cells, highly motile cells isolated by the device exhibited similar tumourigenic potential but markedly increased metastatic propensity in vivo. RNA sequencing of the highly motile cells revealed an enrichment of motility-related and survival-related genes. The approach might be developed into a companion assay for the prediction of metastasis in patients and for the selection of effective therapeutic regimens.


Asunto(s)
Neoplasias de la Mama/patología , Microfluídica/métodos , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Ensayos Clínicos como Asunto , Células Epiteliales/patología , Femenino , Genotipo , Humanos , Ratones Desnudos , Mutación/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Fenotipo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Ann Neurol ; 86(1): 129-142, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31025394

RESUMEN

OBJECTIVE: To define a distinct, dominantly inherited, mild skeletal myopathy associated with prominent and consistent tremor in two unrelated, three-generation families. METHODS: Clinical evaluations as well as exome and panel sequencing analyses were performed in affected and nonaffected members of two families to identify genetic variants segregating with the phenotype. Histological assessment of a muscle biopsy specimen was performed in 1 patient, and quantitative tremor analysis was carried out in 2 patients. Molecular modeling studies and biochemical assays were performed for both mutations. RESULTS: Two novel missense mutations in MYBPC1 (p.E248K in family 1 and p.Y247H in family 2) were identified and shown to segregate perfectly with the myopathy/tremor phenotype in the respective families. MYBPC1 encodes slow myosin binding protein-C (sMyBP-C), a modular sarcomeric protein playing structural and regulatory roles through its dynamic interaction with actin and myosin filaments. The Y247H and E248K mutations are located in the NH2 -terminal M-motif of sMyBP-C. Both mutations result in markedly increased binding of the NH2 terminus to myosin, possibly interfering with normal cross-bridge cycling as the first muscle-based step in tremor genesis. The clinical tremor features observed in all mutation carriers, together with the tremor physiology studies performed in family 2, suggest amplification by an additional central loop modulating the clinical tremor phenomenology. INTERPRETATION: Here, we link two novel missense mutations in MYBPC1 with a dominant, mild skeletal myopathy invariably associated with a distinctive tremor. The molecular, genetic, and clinical studies are consistent with a unique sarcomeric origin of the tremor, which we classify as "myogenic tremor." ANN NEUROL 2019.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Mutación Missense/genética , Temblor/diagnóstico , Temblor/genética , Adulto , Proteínas Portadoras/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
16.
J Gen Physiol ; 151(5): 645-659, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30705121

RESUMEN

Myosin binding protein C (MyBP-C) is a 125-140-kD protein located in the C-zone of each half-thick filament. It is thought to be an important regulator of contraction, but its precise role is unclear. Here we investigate mechanisms by which skeletal MyBP-C regulates myofilament function using rat permeabilized skeletal muscle fibers. We mount either slow-twitch or fast-twitch skeletal muscle fibers between a force transducer and motor, use Ca2+ to activate a range of forces, and measure contractile properties including transient force overshoot, rate of force development, and loaded sarcomere shortening. The transient force overshoot is greater in slow-twitch than fast-twitch fibers at all Ca2+ activation levels. In slow-twitch fibers, protein kinase A (PKA) treatment (a) augments phosphorylation of slow skeletal MyBP-C (sMyBP-C), (b) doubles the magnitude of the relative transient force overshoot at low Ca2+ activation levels, and (c) increases force development rates at all Ca2+ activation levels. We also investigate the role that phosphorylated and dephosphorylated sMyBP-C plays in loaded sarcomere shortening. We test the hypothesis that MyBP-C acts as a brake to filament sliding within the myofilament lattice by measuring sarcomere shortening as thin filaments traverse into the C-zone during lightly loaded slow-twitch fiber contractions. Before PKA treatment, shortening velocity decelerates as sarcomeres traverse from ∼3.10 to ∼3.00 µm. After PKA treatment, sarcomeres shorten a greater distance and exhibit less deceleration during similar force clamps. After sMyBP-C dephosphorylation, sarcomere length traces display a brief recoil (i.e., "bump") that initiates at ∼3.06 µm during loaded shortening. Interestingly, the timing of the bump shifts with changes in load but manifests at the same sarcomere length. Our results suggest that sMyBP-C and its phosphorylation state regulate sarcomere contraction by a combination of cross-bridge recruitment, modification of cross-bridge cycling kinetics, and alteration of drag forces that originate in the C-zone.


Asunto(s)
Proteínas Portadoras/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Masculino , Contracción Muscular/fisiología , Miofibrillas/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Sarcómeros/metabolismo
17.
Pflugers Arch ; 471(5): 735-743, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30099631

RESUMEN

Obscurins, expressed from the single OBSCN gene, are a family of giant, modular, cytoskeletal proteins that play key structural and regulatory roles in striated muscles. They were first implicated in the development of heart disease in 2007 when two missense mutations were found in a patient diagnosed with hypertrophic cardiomyopathy (HCM). Since then, the discovery of over a dozen missense, frameshift, and splicing mutations that are linked to various forms of cardiomyopathy, including HCM, dilated cardiomyopathy (DCM), and left ventricular non-compaction (LVNC), has highlighted OBSCN as a potential disease-causing gene. At this time, the functional consequences of the identified mutations remain largely elusive, and much work has yet to be done to characterize the disease mechanisms of pathological OBSCN variants. Herein, we describe the OBSCN mutations known to date, discuss their potential impact on disease development, and provide future directions in order to better understand the involvement of obscurins in heart disease.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Humanos , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/química , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
18.
FASEB J ; : fj201800624R, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29874125

RESUMEN

Myosin binding protein-C slow (sMyBP-C) comprises a family of accessory proteins in skeletal muscles that bind both myosin and actin filaments. Herein, we examined the role of sMyBP-C in adult skeletal muscles using in vivo gene transfer and clustered regularly interspaced short palindromic repeats technology to knock down all known sMyBP-C variants. Our findings, confirmed in two different skeletal muscles, demonstrated efficient knockdown (KD) of sMyBP-C (>70%) resulting in notably decreased levels of thick, but not thin, filament proteins ranging from ∼50% for slow and fast myosin to ∼20% for myomesin. Consistent with this, A bands were selectively distorted, and sarcomere length was significantly reduced. Contrary to earlier in vitro studies showing that addition of recombinant sMyBP-C slows down the formation of actomyosin crossbridges, our work demonstrates that KD of sMyBP-C in intact myofibers results in decreased contraction and relaxation kinetics under no-load conditions. Similarly, KD muscles develop markedly reduced twitch and tetanic force and contraction velocity. Taken together, our results show that sMyBP-C is essential for the regular organization and maintenance of myosin filaments into A bands and that its structural role precedes its ability to regulate actomyosin crossbridges.-Geist, J., Ward, C. W., Kontrogianni-Konstantopoulos, A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties.

20.
Compr Physiol ; 8(2): 631-709, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29687901

RESUMEN

Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.


Asunto(s)
Proteínas Musculares/fisiología , Miofibrillas/metabolismo , Sarcómeros/fisiología , Animales , Humanos , Contracción Muscular/fisiología , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Enfermedades Musculares/metabolismo , Mutación , Miofibrillas/fisiología , Miosinas/genética , Miosinas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...