Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 236(1): 296-308, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719102

RESUMEN

Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.


Asunto(s)
Asteraceae , Policétidos , Asteraceae/genética , Glucósidos , Plantas Modificadas Genéticamente/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Pironas
2.
Phytochemistry ; 134: 38-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27884449

RESUMEN

The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.


Asunto(s)
Asteraceae/enzimología , Asteraceae/genética , Flores/metabolismo , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Biopolímeros , Carotenoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Polen/metabolismo , Sintasas Poliquetidas/genética , Pironas/metabolismo , Proteínas Recombinantes/metabolismo
3.
Plant J ; 87(6): 548-58, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27227340

RESUMEN

Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4-hydroxy-5-methylcoumarin (HMC). Unlike most coumarins, 5-methylcoumarins have been suggested to be derived through the acetate-malonate pathway. All of these polyketide-derived glucosylated molecules are considered to have a role in defense against herbivores and phytopathogens in gerbera. Gerbera expresses three genes encoding 2-pyrone synthases (G2PS1-3). The enzymes are chalcone synthase-like polyketide synthases with altered starter substrate specificity. We have shown previously that G2PS1 is responsible for the synthesis of 4-hydroxy-6-methyl-2-pyrone (triacetolactone), a putative precursor of gerberin and parasorboside. Here we show that polyketide synthases G2PS2 and G2PS3 are necessary for the biosynthesis of HMC in gerbera, and that a reductase enzyme is likely required to complete the pathway to HMC. G2PS2 is expressed in the leaf blade and inflorescences of gerbera, while G2PS3 is strictly root specific. Heterologous expression of G2PS2 or G2PS3 in tobacco leads to the formation of 4,7-dihydroxy-5-methylcoumarin, apparently an unreduced precursor of HMC, while ectopic expression in gerbera leads to HMC formation in tissues where nontransgenic tissue does not express the genes and does not accumulate the compound. Using protein modelling and site-directed mutagenesis we identified the residues I203 and T344 in G2PS2 and G2PS3 to be critical for pentaketide synthase activity.


Asunto(s)
Asteraceae/metabolismo , Cumarinas/metabolismo , Proteínas de Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Asteraceae/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Pironas/metabolismo , Nicotiana/genética
4.
New Phytol ; 201(4): 1469-1483, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24266452

RESUMEN

• Chalcone synthase (CHS) is the key enzyme in the first committed step of the flavonoid biosynthetic pathway and catalyzes the stepwise condensation of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone. In plants, CHS is often encoded by a small family of genes that are temporally and spatially regulated. Our earlier studies have shown that GCHS4 is highly activated by ectopic expression of an MYB-type regulator GMYB10 in gerbera (Gerbera hybrida). • The tissue- and development-specific expression patterns of three gerbera CHS genes were examined. Virus-induced gene silencing (VIGS) was used to knock down GCHS1 and GCHS4 separately in gerbera inflorescences. • Our data show that GCHS4 is the only CHS encoding gene that is expressed in the cyanidin-pigmented vegetative tissues of gerbera cv Terraregina. GCHS3 expression is pronounced in the pappus bristles of the flowers. Expression of both GCHS1 and GCHS4 is high in the epidermal cells of gerbera petals, but only GCHS1 is contributing to flavonoid biosynthesis. • Gerbera contains a family of three CHS encoding genes showing different spatial and temporal regulation. GCHS4 expression in gerbera petals is regulated post-transcriptionally, at the level of either translation elongation or protein stability.


Asunto(s)
Aciltransferasas/genética , Antocianinas/biosíntesis , Asteraceae/enzimología , Asteraceae/genética , Genes Duplicados/genética , Genes de Plantas/genética , Variación Genética , Aciltransferasas/química , Secuencia de Aminoácidos , Flores/genética , Flores/crecimiento & desarrollo , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genes Dominantes , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...