Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 11(1): 93, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779690

RESUMEN

BACKGROUND: Metabolic alterations, related to cerebral glucose metabolism, brain insulin resistance, and age-induced mitochondrial dysfunction, play an important role in Alzheimer's disease (AD) on both the systemic and central nervous system level. To study the extent and significance of these alterations in AD, quantitative metabolomics was applied to plasma and cerebrospinal fluid (CSF) from clinically well-characterized AD patients and cognitively healthy control subjects. The observed metabolic alterations were associated with core pathological processes of AD to investigate their relation with amyloid pathology and tau-related neurodegeneration. METHODS: In a case-control study of clinical and biomarker-confirmed AD patients (n = 40) and cognitively healthy controls without cerebral AD pathology (n = 34) with paired plasma and CSF samples, we performed metabolic profiling, i.e., untargeted metabolomics and targeted quantification. Targeted quantification focused on identified deregulated pathways highlighted in the untargeted assay, i.e. the TCA cycle, and its anaplerotic pathways, as well as the neuroactive tryptophan and kynurenine pathway. RESULTS: Concentrations of several TCA cycle and beta-oxidation intermediates were higher in plasma of AD patients, whilst amino acid concentrations were significantly lower. Similar alterations in these energy metabolism intermediates were observed in CSF, together with higher concentrations of creatinine, which were strongly correlated with blood-brain barrier permeability. Alterations of several amino acids were associated with CSF Amyloidß1-42. The tryptophan catabolites, kynurenic acid and quinolinic acid, showed significantly higher concentrations in CSF of AD patients, which, together with other tryptophan pathway intermediates, were correlated with either CSF Amyloidß1-42, or tau and phosphorylated Tau-181. CONCLUSIONS: This study revealed AD-associated systemic dysregulation of nutrient sensing and oxidation and CNS-specific alterations in the neuroactive tryptophan pathway and (phospho)creatine degradation. The specific association of amino acids and tryptophan catabolites with AD CSF biomarkers suggests a close relationship with core AD pathology. Our findings warrant validation in independent, larger cohort studies as well as further investigation of factors such as gender and APOE genotype, as well as of other groups, such as preclinical AD, to identify metabolic alterations as potential intervention targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Carnitina/análogos & derivados , Metabolismo Energético/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Carnitina/sangre , Carnitina/líquido cefalorraquídeo , Carnitina/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Fosforilación , Triptófano/metabolismo , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo
2.
Data Brief ; 21: 1358-1362, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30456258

RESUMEN

Cerebrospinal fluid (CSF) is a key body fluid that maintains the homeostasis in central nervous system (CNS). As a biofluid whose content reflects the brain metabolic activity, the CSF is analyzed in the context of neurological diseases and is rarely collected from healthy subjects. For this reason, the metabolite variation associated with general phenotypic characteristics such as gender and age have hardly ever been studied. Here we present the hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) data as a result of untargeted metabolomics analysis of a cohort of elderly cognitively healthy volunteers (n = 32). 146 unambiguously identified water soluble metabolites (using accurate mass, retention time and MS/MS matching against spectral libraries) were measured and their abundances across all the subjects depending on their gender are provided in this article. Data tables are available at https://data.mendeley.com/datasets/c73xtsd4s5/1. it's published on mendeley, the DOI is DOI:10.17632/c73xtsd4s5.1. The data presented in this article are related to the research article entitled "A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome: Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects" (Gallart-Ayala et al., 2018, In press).

3.
Anal Chim Acta ; 1037: 327-337, 2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30292309

RESUMEN

Cerebrospinal fluid (CSF) is a key body fluid that maintains the homeostasis in central nervous system (CNS). As a biofluid whose content reflects the brain metabolic activity, the CSF has been profiled in the context of neurological diseases to provide novel insights into the disease mechanisms. However, a global high-throughput approach to measure a broad diversity of polar metabolites present in CSF is lacking. Although still perceived as challenging and less reproducible, hydrophilic interaction liquid chromatography (HILIC) has recently evolved to offer the unprecedented coverage capacity of water-soluble metabolome. Here, we present a global HILIC high-resolution mass spectrometry-based (HRMS) approach that combines the profiling in acidic pH ESI (+) and basic pH ESI (-) mode to extend the coverage of CSF polar metabolome. This approach allowed us to annotate and measure a broad range of central carbon metabolites (implicated in glycolysis, TCA cycle, nucleotide, amino acid and fatty acid metabolism) in CSF collected from cognitively healthy elderly volunteers (n = 32), using a single extraction method. Metabolite annotation was achieved using the accurate mass, RT and MS/MS criteria, allowing for the characterization of 146 measurable metabolites. Exploration of characterized individual CSF profiles allowed for a discovery of intriguing gender-associated differences, with significantly higher acylcarnitine levels in men and higher taurine levels women. With this case study, we demonstrate the value of combined HILIC ESI ± HRMS profiling to assess CSF metabolome in clinical research studies.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Disfunción Cognitiva/metabolismo , Metaboloma , Caracteres Sexuales , Anciano , Cromatografía Liquida , Estudios de Cohortes , Femenino , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad
4.
Tissue Eng Part C Methods ; 23(12): 964-970, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28806898

RESUMEN

Tissue engineering technologies are new and promising techniques in fat tissue reconstruction. However, to assess their efficacy before any clinical application, in vivo experiments are mandatory. This study assesses whether microcomputed tomography (CT) scan imaging is suitable to analyze in vivo the behavior of injected engineered polymer and changes in fat tissue. The volume of mice inguinal fat pads and the resorption rate of different polymers were analyzed by CT scan for up to 3 months. Different biomaterials were used, including our innovative microspheres loaded with oleic acid. We were able to follow in vivo the polymer and the fat volume of the same animals during a long-term follow-up of 90 days. Semiautomatic three-dimensional quantification allowed to determine the fat volume enhancement after injection, as well as the resorption rate of our product compared to other biomaterials (i.e., polylactic and hyaluronic acid) until 90 days. Our results demonstrate the encouraging proof-of-principle evidence for the application of micro-CT scan technology to follow in vivo biodegradable polymers in a fat tissue engineering approach. This noninvasive technique offers the advantages of the long-term follow-up of fat tissue and synthetic materials in the same animals, which allows both a scientific evaluation of the measurements and the reduction of the number of animals used in in vivo protocols in accordance with the 3 "R" principles governing the use of animals in science.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Imagenología Tridimensional , Inyecciones , Polímeros/administración & dosificación , Microtomografía por Rayos X , Animales , Femenino , Conducto Inguinal/diagnóstico por imagen , Ratones Endogámicos BALB C , Microesferas , Tamaño de los Órganos
5.
Anal Bioanal Chem ; 406(9-10): 2343-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24500754

RESUMEN

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for the quantitative imaging of Fe, Cu and Zn in cryostat sections of human eye lenses and for depth profiling analysis in bovine lenses. To ensure a tight temperature control throughout the experiments, a new Peltier-cooled laser ablation cell was employed. For quantification purposes, matrix-matched laboratory standards were prepared from a pool of human lenses from eye donors and spiked with standard solutions containing different concentrations of natural abundance Fe, Cu and Zn. A normalisation strategy was also carried out to correct matrix effects, lack of tissue homogeneity and/or instrumental drifts using a thin gold film deposited on the sample surface. Quantitative images of cryo-sections of human eye lenses analysed by LA-ICP-MS revealed a homogeneous distribution of Fe, Cu and Zn in the nuclear region and a slight increase in Fe concentration in the outer cell layer (i.e. lens epithelium) at the anterior pole. These results were assessed also by isotope dilution mass spectrometry, and Fe, Cu and Zn concentrations determined by ID-ICP-MS in digested samples of lenses and lens capsules.


Asunto(s)
Cobre/análisis , Hierro/análisis , Cristalino/química , Espectrometría de Masas/métodos , Oligoelementos/análisis , Zinc/análisis , Animales , Bovinos , Humanos
6.
Anal Chim Acta ; 809: 88-96, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24418137

RESUMEN

A new custom-built Peltier-cooled laser ablation cell is described. The proposed cryogenic cell combines a small internal volume (20 cm(3)) with a unique and reliable on-sample temperature control. The use of a flexible temperature sensor, directly located on the sample surface, ensures a rigorous sample temperature control throughout the entire analysis time and allows instant response to any possible fluctuation. In this way sample integrity and, therefore, reproducibility can be guaranteed during the ablation. The refrigeration of the proposed cryogenic cell combines an internal refrigeration system, controlled by a sensitive thermocouple, with an external refrigeration system. Cooling of the sample is directly carried out by 8 small (1 cm×1 cm) Peltier elements placed in a circular arrangement in the base of the cell. These Peltier elements are located below a copper plate where the sample is placed. Due to the small size of the cooling electronics and their circular allocation it was possible to maintain a peephole under the sample for illumination allowing a much better visualization of the sample, a factor especially important when working with structurally complex tissue sections. The analytical performance of the cryogenic cell was studied using a glass reference material (SRM NIST 612) at room temperature and at -20°C. The proposed cell design shows a reasonable signal washout (signal decay within less than 10 s to background level), high sensitivity and good signal stability (in the range 6.6-11.7%). Furthermore, high precision (0.4-2.6%) and accuracy (0.3-3.9%) in the isotope ratio measurements were also observed operating the cell both at room temperature and at -20°C. Finally, experimental results obtained for the cell application to qualitative elemental imaging of structurally complex tissue samples (e.g. eye sections from a native frozen porcine eye and fresh flower leaves) demonstrate that working in cryogenic conditions is critical in such type of direct sample analysis.

7.
Anal Bioanal Chem ; 405(10): 3091-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23380953

RESUMEN

Laser ablation coupled to inductively coupled plasma mass spectrometry has been developed for the elemental imaging of Mg, Fe and Cu distribution in histological tissue sections of fixed eyes, embedded in paraffin, from human donors (cadavers). This work presents the development of a novel internal standard correction methodology based on the deposition of a homogeneous thin gold film on the tissue surface and the use of the (197)Au(+) signal as internal standard. Sample preparation (tissue section thickness) and laser conditions were carefully optimized, and internal normalisation using (197)Au(+) was compared with (13)C(+) correction for imaging applications. (24)Mg(+), (56)Fe(+) and (63)Cu(+) distributions were investigated in histological sections of the anterior segment of the eye (including the iris, ciliary body, cornea and trabecular meshwork) and were shown to be heterogeneously distributed along those tissue structures. Reproducibility was assessed by imaging different human eye sections from the same donor and from ten different eyes from adult normal donors, which showed that similar spatial maps were obtained and therefore demonstrate the analytical potential of using (197)Au(+) as internal standard. The proposed analytical approach could offer a robust tool with great practical interest for clinical studies, e.g. to investigate trace element distribution of metals and their alterations in ocular diseases.


Asunto(s)
Ojo/química , Oro/análisis , Espectrometría de Masas/normas , Oligoelementos/análisis , Ojo/anatomía & histología , Humanos , Espectrometría de Masas/métodos , Estándares de Referencia
8.
Anal Bioanal Chem ; 403(8): 2113-25, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22543715

RESUMEN

LA-ICP-MS allows precise, relatively fast, and spatially resolved measurements of elements and isotope ratios at trace and ultratrace concentration levels with minimal sample preparation. Over the past few years this technique has undergone rapid development, and it has been increasingly applied in many different fields, including biological and medical research. The analysis of essential, toxic, and therapeutic metals, metalloids, and nonmetals in biomedical tissues is a key task in the life sciences today, and LA-ICP-MS has proven to be an excellent complement to the organic MS techniques that are much more commonly employed in the biomedical field. In order to provide an appraisal of the fast progress that is occurring in this field, this review critically describes new developments for LA-ICP-MS as well as the most important applications of LA-ICP-MS, with particular emphasis placed on the quantitative imaging of elements in biological tissues, the analysis of heteroatom-tagged proteins after their separation and purification by gel electrophoresis, and the analysis of proteins that do not naturally have ICP-MS-detectable elements in their structures, thus necessitating the use of labelling strategies.


Asunto(s)
Técnicas Histológicas/métodos , Terapia por Láser/métodos , Espectrometría de Masas/métodos , Metales/análisis , Proteínas/análisis , Animales , Electroforesis en Gel Bidimensional/métodos , Diseño de Equipo , Técnicas Histológicas/instrumentación , Humanos , Terapia por Láser/instrumentación , Espectrometría de Masas/instrumentación , Proteínas/química , Proteínas/aislamiento & purificación
9.
Anal Chem ; 83(13): 5353-60, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21604816

RESUMEN

We report for the first time the absolute quantification of a metalloprotein separated by nondenaturing gel electrophoresis (GE) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in combination with species-specific isotope dilution mass spectrometry (IDMS). The proposed method is based on the use of an isotopically enriched (57)Fe-transferrin complex to quantify natural transferrin (Tf) in human serum samples. First, the saturation process of Tf with natural abundance or isotopically enriched (57)Fe was accomplished by using freshly synthesized Fe-citrate solutions. The stability of the metal-protein complex as well as its stoichiometry was investigated by spectrophotometry and ICP-MS, demonstrating a satisfactory stability over a period of at least one month and a molar ratio Fe:Tf of 1.94 ± 0.09, which is close to the expected value of 2. The species-specific IDMS method was compared with external calibration using the Fe-Tf (absolute Tf amount between 2 and 10 µg) and different sample preparation procedures (stained and nonstained gels) as well as two laser ablation strategies (single line ablation in the direction perpendicular or horizontal to the electrophoretic migration) were evaluated. The proposed species-specific GE-LA-ICP-IDMS method was tested for the analysis of a serum certified reference material (ERM-DA470k/IFCC). The results were in good agreement with the certified value with relative standard deviation values in the range of 0.9-2.7% depending on the data treatment procedure used. Furthermore, the analysis time has been drastically reduced in comparison with previous approaches to less than 15 min. The quantification by species-specific GE-LA-ICP-IDMS allowed us to obtain accurate and precise results not only by analyzing the protein spot in the middle position but also in the adjacent ablation line to the center.


Asunto(s)
Espectrometría de Masas/métodos , Transferrina/metabolismo , Calibración , Electroforesis en Gel de Poliacrilamida , Humanos , Isótopos , Rayos Láser , Estándares de Referencia , Reproducibilidad de los Resultados , Transferrina/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...