Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Pharmacol Ther ; 26(3): 279-288, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33111565

RESUMEN

Mortality and morbidity after cardiac arrest remain high due to ischemia/reperfusion (I/R) injury causing multi-organ damages, even after successful return of spontaneous circulation. We previously generated H2O2-activatable antioxidant nanoparticles formulated with copolyoxalate containing vanillyl alcohol (PVAX) to prevent I/R injury. In this study, we examined whether PVAX could effectively reduce organ damages in a rat model of whole-body ischemia/reperfusion injury (WBIR). To induce a cardiac arrest, 70µl/100 g body weight of 1 mmol/l potassium chloride was administered via the jugular venous catheter. The animals in both the vehicle and PVAX-treated groups had similar baseline blood pressure. After 5.5 minutes of cardiac arrest, animals were resuscitated via intravenous epinephrine followed by chest compressions. PVAX or vehicle was injected after the spontaneous recovery of blood pressure was noted, followed by the same dose of second injection 10 minutes later. After 24 hours, multiple organs were harvested for pathological, biochemical, molecular analyses. No significant difference on the restoration of spontaneous circulation was observed between vehicle and PVAX groups. Analysis of organs harvested 24 hours post procedure showed that whole body I/R significantly increased reactive oxygen species (ROS) generation, inflammatory markers, and apoptosis in multiple organs (heart, brain, and kidney). PVAX treatment effectively blocked ROS generation, reduced the elevation of pro-inflammatory cytokines, and decreased apoptosis in these organs. Taken together, our results suggest that PVAX has potent protective effect against WBIR induced multi-organ injury, possibly by blocking ROS-mediated cell damage.


Asunto(s)
Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Nanopartículas/química , Daño por Reperfusión/prevención & control , Animales , Antioxidantes/administración & dosificación , Alcoholes Bencílicos/química , Modelos Animales de Enfermedad , Femenino , Peróxido de Hidrógeno/administración & dosificación , Mediadores de Inflamación , Masculino , Insuficiencia Multiorgánica/prevención & control , Nanopartículas/administración & dosificación , Polímeros/química , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/antagonistas & inhibidores
2.
Medicines (Basel) ; 5(2)2018 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-29690545

RESUMEN

Cardiovascular diseases (CVDs) have become prominent in mortality and morbidity rates. Prevalent cardiovascular conditions, such as hypertension, atherosclerosis and oxidative stress, are increasing at an alarming rate. Conventional drugs have been associated with adverse effects, suggesting a need for an alternative measure to ameliorate CVD. A number of plant- and herb-derived preventative food and therapeutic drugs for cardiovascular conditions are progressively used for their various benefits. Naturally derived food and drugs have fewer side effects because they come from natural elements; preventative food, such as grape seed, inhibits changes of histopathology and biomarkers in vital organs whereas therapeutic drugs, for instance Xanthone, improve heart functions by suppressing oxidative stress of myocyte. This review closely examines the various plant- and herb-derived drugs that have assumed an essential role in treating inflammation and oxidative stress for prevalent cardiovascular conditions. Furthermore, the use of plant-derived medicine with other synthetic particles, such as nanoparticles, for targeted therapy is investigated for its effective clinical use in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...