Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Math Biosci ; 301: 93-110, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29684407

RESUMEN

Two predator-prey model formulations are studied: the classical Rosenzweig-MacArthur (RM) model and the Mass Balance (MB) chemostat model. When the growth and loss rate of the predator is much smaller than that of the prey these models are slow-fast systems leading mathematically to a singular perturbation problem. In contradiction to the RM-model, the resource for the prey is modelled explicitly in the MB-model but this comes with additional parameters. These parameter values are chosen such that the two models become easy to compare. In both models the transcritical bifurcation, a threshold above which invasion of predator into prey-only system occurs, and the Hopf bifurcation where the interior equilibrium becomes unstable leading to a stable limit cycle occur. The slow-fast limit cycles are called relaxation oscillations which for increasing differences in time scales leads to the well known degenerated trajectories being concatenations of slow parts of the trajectory and fast parts of the trajectory. In the fast-slow version of the RM-model a canard explosion of the stable limit cycles occurs in the oscillatory region of the parameter space. To our knowledge this type of dynamics has not been observed for the RM-model and not even for more complex ecosystem models. When a bifurcation parameter crosses the Hopf bifurcation point the amplitude of the emerging stable limit cycles increases. However, depending of the perturbation parameter the shape of this limit cycle changes abruptly from one consisting of two concatenated slow and fast episodes with small amplitude of the limit cycle, to a shape with large amplitude of which the shape is similar to the relaxation oscillation, the well known degenerated phase trajectories consisting of four episodes (concatenation of two slow and two fast). The canard explosion point is accurately predicted by using an extended asymptotic expansion technique in the perturbation and bifurcation parameter simultaneously where the small amplitude stable limit cycles exist. The predicted dynamics of the MB-model is in a large part of the parameter space similar to that of the RM-model. However, the fast-slow version of MB-model does not predict a canard explosion phenomenon.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Ecosistema , Conceptos Matemáticos , Dinámica Poblacional , Conducta Predatoria
2.
J Math Biol ; 71(6-7): 1575-605, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25773467

RESUMEN

We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population's strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population's strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.


Asunto(s)
Modelos Biológicos , Conducta Predatoria/fisiología , Adaptación Fisiológica , Animales , Evolución Biológica , Ecosistema , Cadena Alimentaria , Teoría del Juego , Conceptos Matemáticos , Dinámica Poblacional
3.
Ecotoxicol Environ Saf ; 74(4): 929-39, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21256591

RESUMEN

The dynamical behaviour of an aquatic ecosystem stressed by limiting nutrients and exposure to a conservative toxicant is investigated. The ecosystem downstream of a pollution source consists of: nutrients, biotic pelagic and benthic communities, and detritus pools in the water body and on the sediment. The long-term dynamic behaviour of this system is analysed using bifurcation theory. A reference state is defined and our aim is to quantify the effects of toxicological (toxic exposure), ecological (feeding, predation, competition) and environmental stressors (nutrient supply, dilution rate). To that end we calculate the ranges of stress levels where the long-term dynamics (equilibrium, oscillatory or chaotic behaviour) is qualitatively the same. In this way we obtain levels of toxicological loading where the abundances of all populations are the same as in the reference case, the no-effect region. We will also calculate toxic exposure levels that do not lead to a change in the composition of the ecosystem, and therefore its structure, with respect to the reference unexposed situation, but where population abundances and internal toxicant concentrations may have been changed quantitatively. The model predicts that due to indirect effects even low sublethal toxic exposure can lead to catastrophic changes in the ecosystem functioning and structure, and that the long-term sensitivities of oligotrophic and eutrophic systems to toxic stress are different.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Biodiversidad , Cadena Alimentaria , Modelos Biológicos , Modelos Químicos
4.
Philos Trans R Soc Lond B Biol Sci ; 365(1557): 3579-90, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20921055

RESUMEN

In this paper, we describe a technique to evaluate the evolutionary dynamics of the timing of spawning for iteroparous species. The life cycle of the species consists of three life stages, embryonic, juvenile and adult whereby the transitions of life stages (gametogenesis, birth and maturation) occur at species-specific sizes. The dynamics of the population is studied in a semi-chemostat environment where the inflowing food concentration is periodic (annual). A dynamic energy budget-based continuous-time model is used to describe the uptake of the food, storage in reserves and allocation of the energy to growth, maintenance, development (embryos, juveniles) and reproduction (adults). A discrete-event process is used for modelling reproduction. At a fixed spawning date of the year, the reproduction buffer is emptied and a new cohort is formed by eggs with a fixed size and energy content. The population consists of cohorts: for each year one consisting of individuals with the same age which die after their last reproduction event. The resulting mathematical model is a finite-dimensional set of ordinary differential equations with fixed 1-year periodic boundary conditions yielding a stroboscopic map. We will study the evolutionary development of the population using the adaptive dynamics approach. The trait is the timing of spawning. Pairwise and mutual invasibility plots are calculated using bifurcation analysis of the stroboscopic map. The evolutionary singular strategy value belonging to the evolutionary endpoint for the trait allows for an interpretation of the reproduction strategy of the population. In a case study, parameter values from the literature for the bivalve Macoma balthica are used.


Asunto(s)
Adaptación Fisiológica/fisiología , Evolución Biológica , Estadios del Ciclo de Vida/fisiología , Modelos Biológicos , Animales , Bivalvos/fisiología , Metabolismo Energético , Reproducción/fisiología
5.
Water Res ; 43(13): 3292-300, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19481234

RESUMEN

We study the effects of toxicants on the functioning of phototrophic unicellular organism (an algae) in a simple aquatic microcosm by applying a parameter-sparse model. The model allows us to study the interaction between ecological and toxicological effects. Nutrient stress and toxicant stress, together or alone, can cause extinction of the algal population. The modelled algae consume dissolved inorganic nitrogen (DIN) under surplus light and use it for growth and maintenance. Dead algal biomass is mineralized by bacterial activity, leading to nutrient recycling. The ecological model is coupled with a toxicity-module that describes the dependency of the algal growth and death rate on the toxicant concentration. Model parameter fitting is performed on experimental data from Liebig, M., Schmidt, G., Bontje, D., Kooi, B.W., Streck, G., Traunspurger, W., Knacker, T. [2008. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aquatic Toxicology 88, 102-110]. These experiments were especially designed to include nutrient limitation, nutrient recycling and long-term exposure to toxicants. The flagellate species Cryptomonas sp. was exposed to the herbicide prometryn and insecticide methyl parathion in semi-closed Erlenmeyers. Given the total limiting amount of nitrogen in the system, the estimated toxicant concentration at which a long-term steady population of algae goes extinct will be derived. We intend to use the results of this study to investigate the effects of ecological (environmental) and toxicological stresses on more realistic ecosystem structure and functioning.


Asunto(s)
Criptófitas/efectos de los fármacos , Ecotoxicología/métodos , Modelos Biológicos , Estrés Fisiológico , Biomasa , Criptófitas/crecimiento & desarrollo , Criptófitas/metabolismo , Metil Paratión/toxicidad , Nitrógeno/metabolismo , Prometrina/toxicidad , Contaminantes Químicos del Agua/toxicidad
6.
Math Biosci Eng ; 5(3): 567-83, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18616359

RESUMEN

We study the influence of the particular form of the functional response in two-dimensional predator-prey models with respect to the stability of the nontrivial equilibrium. This equilibrium is stable between its appearance at a transcritical bifurcation and its destabilization at a Hopf bifurcation, giving rise to periodic behavior. Based on local bifurcation analysis, we introduce a classification of stabilizing effects. The classical Rosenzweig-MacArthur model can be classified as weakly stabilizing, undergoing the paradox of enrichment, while the well known Beddington-DeAngelis model can be classified as strongly stabilizing. Under certain conditions we obtain a complete stabilization, resulting in an avoidance of limit cycles. Both models, in their conventional formulation, are compared to a generalized, steady-state independent two-dimensional version of these models, based on a previously developed normalization method. We show explicitly how conventional and generalized models are related and how to interpret the results from the rather abstract stability analysis of generalized models.


Asunto(s)
Conducta Predatoria , Algoritmos , Animales , Ecosistema , Cadena Alimentaria , Matemática , Modelos Biológicos , Modelos Estadísticos , Modelos Teóricos , Dinámica Poblacional
7.
Math Biosci Eng ; 5(4): 771-87, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19278281

RESUMEN

The dynamic behaviour of simple aquatic ecosystems with nutrient recycling in a chemostat, stressed by limited food availability and a toxicant, is analysed. The aim is to find effects of toxicants on the structure and functioning of the ecosystem. The starting point is an unstressed ecosystem model for nutrients, populations, detritus and their intra- and interspecific interactions, as well as the interaction with the physical environment. The fate of the toxicant includes transport and exchange between the water and the populations via two routes, directly from water via diffusion over the outer membrane of the organism and via consumption of contaminated food. These processes are modelled using mass-balance formulations and diffusion equations. At the population level the toxicant affects different biotic processes such as assimilation, growth, maintenance, reproduction, and survival, thereby changing their biological functioning. This is modelled by taking the parameters that described these processes to be dependent on the internal toxicant concentration. As a consequence, the structure of the ecosystem, that is its species composition, persistence, extinction or invasion of species and dynamics behaviour, steady state oscillatory and chaotic, can change. To analyse the long-term dynamics we use the bifurcation analysis approach. In ecotoxicological studies the concentration of the toxicant in the environment can be taken as the bifurcation parameter. The value of the concentration at a bifurcation point marks a structural change of the ecosystem. This indicates that chemical stressors are analysed mathematically in the same way as environmental (e.g. temperature) and ecological (e.g. predation) stressors. Hence, this allows an integrated approach where different type of stressors are analysed simultaneously. Environmental regimes and toxic stress levels at which no toxic effects occur and where the ecosystem is resistant will be derived. A numerical continuation technique to calculate the boundaries of these regions will be given.


Asunto(s)
Ecosistema , Ecotoxicología , Modelos Biológicos , Contaminación del Agua , Animales , Cadena Alimentaria , Conducta Predatoria
8.
Math Biosci ; 210(2): 378-94, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17659307

RESUMEN

We study the effects of random feeding, growing and dying in a closed nutrient-limited producer/consumer system, in which nutrient is fully conserved, not only in the mean, but, most importantly, also across random events. More specifically, we relate these random effects to the closest deterministic models, and evaluate the importance of the various times scales that are involved. These stochastic models differ from deterministic ones not only in stochasticity, but they also have more details that involve shorter times scales. We tried to separate the effects of more detail from that of stochasticity. The producers have (nutrient) reserve and (body) structure, and so a variable chemical composition. The consumers have only structure, so a constant chemical composition. The conversion efficiency from producer to consumer, therefore, varies. The consumers use reserve and structure of the producers as complementary compounds, following the rules of Dynamic Energy Budget theory. Consumers die at constant specific rate and decompose instantaneously. Stochasticity is incorporated in the behaviour of the consumers, where the switches to handling and searching, as well as dying are Poissonian point events. We show that the stochastic model has one parameter more than the deterministic formulation without time scale separation for conversions between searching and handling consumers, which itself has one parameter more than the deterministic formulation with time scale separation for these conversions. These extra parameters are the contributions of a single individual producer and consumer to their densities, and the ratio of the two, respectively. The tendency to oscillate increases with the number of parameters. The focus bifurcation point has more relevance for the asymptotic behaviour of the stochastic model than the Hopf bifurcation point, since a randomly perturbed damped oscillation exhibits a behaviour similar to that of the stochastic limit cycle particularly near this bifurcation point. For total nutrient values below the focus bifurcation point, the system gradually becomes more confined to the direct neighbourhood of the isocline for which the producers do not change.


Asunto(s)
Modelos Biológicos , Dinámicas no Lineales , Dinámica Poblacional , Biomasa , Simulación por Computador , Alimentos , Método de Montecarlo , Procesos Estocásticos
9.
Theor Popul Biol ; 70(4): 527-41, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16978675

RESUMEN

We will elaborate the evolutionary course of an ecosystem consisting of a population in a chemostat environment with periodically fluctuating nutrient supply. The organisms that make up the population consist of structural biomass and energy storage compartments. In a constant chemostat environment a species without energy storage always out-competes a species with energy reserves. This hinders evolution of species with storage from those without storage. Using the adaptive dynamics approach for non-equilibrium ecological systems we will show that in a fluctuating environment there are multiple stable evolutionary singular strategies (ss's): one for a species without, and one for a species with energy storage. The evolutionary end-point depends on the initial evolutionary state. We will formulate the invasion fitness in terms of Floquet multipliers for the oscillating non-autonomous system. Bifurcation theory is used to study points where due to evolutionary development by mutational steps, the long-term dynamics of the ecological system changes qualitatively. To that end, at the ecological time scale, the trait value at which invasion of a mutant into a resident population becomes possible can be calculated using numerical bifurcation analysis where the trait is used as the free parameter, because it is just a bifurcation point. In a constant environment there is a unique stable equilibrium for one species following the "competitive exclusion" principle. In contrast, due to the oscillatory dynamics on the ecological time scale two species may coexist. That is, non-equilibrium dynamics enhances biodiversity. However, we will show that this coexistence is not stable on the evolutionary time scale and always one single species survives.


Asunto(s)
Evolución Biológica , Ecosistema , Adaptación Fisiológica
10.
Chemosphere ; 57(8): 745-53, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15488565

RESUMEN

Rate constants for uptake and elimination of chemicals in organisms are often related to partition coefficients (typically the octanol-water partition coefficient). We show that the well-mixed one-compartment model for toxico-kinetics implies that the elimination rate is inversely proportional to the square root of the partition coefficient. When chemical exchange is limited by diffusion in the boundary layers adjacent to the interface, two-film models are appropriate, which have more complex implications for the relationships between the exchange rates and the partition coefficient. We also show that the popular steady-flux approximation of the two-film model is not a conceptual generalization of the one-compartment model, although it shares the first-order kinetics. We compare the kinetics of a series of models with an increasing number of well-mixed compartments for exchange, such that the two-film model results for an infinite number of compartments. The latter model formulation in terms of partial differential equations, and more in particular its boundary condition at the interface of the two media, is believed to be new. In the steady-flux approximation and in the model with single well-mixed boundary layers and low diffusivities, the elimination rate depends hyperbolically on the partition coefficient. The available data for abiotic systems (SPME fibers) supports a hyperbolic relationship, whereas the data for aquatic biota are less discriminating between a hyperbolic or a square root relationship with the partition coefficient. The daphnia data showed less scatter than the fish data, possibly due to the small variance in body sizes, since elimination rates are inversely proportional to body length. The square root relationship fitted these data best.


Asunto(s)
Sustancias Peligrosas/metabolismo , Sustancias Peligrosas/farmacocinética , Modelos Biológicos , Modelos Químicos , Animales , Biotransformación , Daphnia/metabolismo , Peces/metabolismo , Cinética
11.
J Math Biol ; 49(3): 227-71, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15293013

RESUMEN

Basic Lotka-Volterra type models in which mutualism (a type of symbiosis where the two populations benefit both) is taken into account, may give unbounded solutions. We exclude such behaviour using explicit mass balances and study the consequences of symbiosis for the long-term dynamic behaviour of a three species system, two prey and one predator species in the chemostat. We compose a theoretical food web where a predator feeds on two prey species that have a symbiotic relationships. In addition to a species-specific resource, the two prey populations consume the products of the partner population as well. In turn, a common predator forages on these prey populations. The temporal change in the biomass and the nutrient densities in the reactor is described by ordinary differential equations (ODE). Since products are recycled, the dynamics of these abiotic materials must be taken into account as well, and they are described by odes in a similar way as the abiotic nutrients. We use numerical bifurcation analysis to assess the long-term dynamic behaviour for varying degrees of symbiosis. Attractors can be equilibria, limit cycles and chaotic attractors depending on the control parameters of the chemostat reactor. These control parameters that can be experimentally manipulated are the nutrient density of the inflow medium and the dilution rate. Bifurcation diagrams for the three species web with a facultative symbiotic association between the two prey populations, are similar to that of a bi-trophic food chain; nutrient enrichment leads to oscillatory behaviour. Predation combined with obligatory symbiotic prey-interactions has a stabilizing effect, that is, there is stable coexistence in a larger part of the parameter space than for a bi-trophic food chain. However, combined with a large growth rate of the predator, the food web can persist only in a relatively small region of the parameter space. Then, two zero-pair bifurcation points are the organizing centers. In each of these points, in addition to a tangent, transcritical and Hopf bifurcation a global heteroclinic bifurcation is emanating. This heteroclinic cycle connects two saddle equilibria where the predator is absent. Under parameter variation the period of the stable limit cycle goes to infinity and the cycle tends to the heteroclinic cycle. At this global bifurcation point this cycle breaks and the boundary of the basin of attraction disappears abruptly because the separatrix disappears together with the cycle. As a result, it becomes possible that a stable two-nutrient-two-prey population system becomes unstable by invasion of a predator and eventually the predator goes extinct together with the two prey populations, that is, the complete food web is destroyed. This is a form of over-exploitation by the predator population of the two symbiotic prey populations. When obligatory symbiotic prey-interactions are modelled with Liebig's minimum law, where growth is limited by the most limiting resource, more complicated types of bifurcations are found. This results from the fact that the Jacobian matrix changes discontinuously with respect to a varying parameter when another resource becomes most limiting.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Simbiosis , Algoritmos , Animales , Biomasa , Ecosistema , Cinética , Dinámica Poblacional , Crecimiento Demográfico , Conducta Predatoria
12.
Biol Rev Camb Philos Soc ; 78(3): 435-63, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14558592

RESUMEN

The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be dosed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use.


Asunto(s)
Homeostasis/fisiología , Simbiosis/fisiología , Animales , Evolución Biológica , Biomasa , Ecosistema , Homeostasis/genética , Modelos Biológicos , Dinámica Poblacional , Simbiosis/genética
13.
Acta Biotheor ; 51(3): 189-222, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12952040

RESUMEN

The dynamics of single populations up to ecosystems, are often described by one or a set of non-linear ordinary differential equations. In this paper we review the use of bifurcation theory to analyse these non-linear dynamical systems. Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic dynamic behaviour of the system. In small-scale systems the underlying models for the populations and their interaction are simple Lotka-Volterra models or more elaborated models with more biological detail. The latter ones are more difficult to analyse, especially when the number of populations is large. Therefore for large-scale systems the Lotka-Volterra equations are still popular despite the limited realism. Various approaches are discussed in which the different time-scale of ecological and evolutionary biological processes are considered together.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Evolución Biológica , Cadena Alimentaria , Dinámicas no Lineales , Análisis Numérico Asistido por Computador , Dinámica Poblacional , Conducta Predatoria , Factores de Tiempo
14.
Math Biosci ; 177-178: 201-28, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11965256

RESUMEN

We study the consequences of omnivory on the dynamic behaviour of a three species food web under chemostat conditions. The food web consists of a prey consuming a nutrient, a predator consuming a prey and an omnivore which preys on the predator and the prey. For each trophic level an ordinary differential equation describes the biomass density in the reactor. The hyperbolic functional response for single and multi prey species figures in the description of the trophic interactions. There are two limiting cases where the omnivore is a specialist; a food chain where the omnivore does not consume the prey and competition where the omnivore does not prey on the predator. We use bifurcation analysis to study the long-term dynamic behaviour for various degrees of omnivory. Attractors can be equilibria, limit cycles or chaotic behaviour depending on the control parameters of the chemostat. Often multiple attractor occur. In this paper we will discuss community assembly. That is, we analyze how the trophic structure of the food web evolves following invasion where a new invader is introduced one at the time. Generally, with an invasion, the invader settles itself and persists with all other species, however, the invader may also replace another species. We will show that the food web model has a global bifurcation, being a heteroclinic connection from a saddle equilibrium to a limit cycle of saddle type. This global bifurcation separates regions in the bifurcation diagram with different attractors to which the system evolves after invasion. To investigate the consequences of omnivory we will focus on invasion of the omnivore. This simplifies the analysis considerably, for the end-point of the assembly sequence is then unique. A weak interaction of the omnivore with the prey combined with a stronger interaction with the predator seems advantageous.


Asunto(s)
Ecología , Cadena Alimentaria , Modelos Biológicos , Conducta Predatoria , Animales , Análisis Numérico Asistido por Computador
15.
J Theor Biol ; 214(2): 233-54, 2002 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-11812175

RESUMEN

We formulate a simple model for growth of a facultative photoautotroph with chemoheterotrophic capabilities. The organism is described by zero, one or three reserve components, and one structural component, all taken to be generalized compounds. The rules of synthesizing units are used for interactions among the uptake processes of the various nutrients and light (parallel processing), and for the merging of autotrophic and heterotrophic activities (sequential processing). For simplicity, we focus on the assimilation of inorganic carbon, inorganic nitrogen and light, and of two organic compounds (dead reserves and dead structure) that originate from aging. The process of resource recycling in a closed environment, as driven by light, and its links with community's structure (amount of biomass) is analysed in this simplest of all communities. Explicit analytical expressions for the steady states show how structure and function depend on the system parameters light, total carbon and total nitrogen. The behaviour resembles the Monod model for the Canonical Community, a three-species ecosystem consisting of producers, consumers and decomposers. If trophic preferences of a mixotroph are allowed to follow a random walk across generations, a trophic structure evolves where mixotrophs coexist with auto- and heterotrophs. Depth profiles are presented for the implied steady-state concentrations of dissolved inorganic carbon and nitrogen.


Asunto(s)
Eucariontes/metabolismo , Luz , Envejecimiento , Biomasa , Carbono/metabolismo , Homeostasis , Modelos Biológicos , Nitrógeno/metabolismo
16.
Bull Math Biol ; 63(4): 769-94, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11497167

RESUMEN

Asymptotic relationships between a class of continuous partial differential equation population models and a class of discrete matrix equations are derived for iteroparous populations. First, the governing equations are presented for the dynamics of an individual with juvenile and adult life stages. The organisms reproduce after maturation, as determined by the juvenile period, and at specific equidistant ages, which are determined by the iteroparous reproductive period. A discrete population matrix model is constructed that utilizes the reproductive information and a density-dependent mortality function. Mortality in the period between two reproductive events is assumed to be a continuous process where the death rate for the adults is a function of the number of adults and environmental conditions. The asymptotic dynamic behaviour of the discrete population model is related to the steady-state solution of the continuous-time formulation. Conclusions include that there can be a lack of convergence to the steady-state age distribution in discrete event reproduction models. The iteroparous vital ratio (the ratio between the maximal age and the reproductive period) is fundamental to determining this convergence. When the vital ratio is rational, an equivalent discrete-time model for the population can be derived whose asymptotic dynamics are periodic and when there are a finite number of founder cohorts, the number of cohorts remains finite. When the ratio is an irrational number, effectively there is convergence to the steady-state age distribution. With a finite number of founder cohorts, the number of cohorts becomes countably infinite. The matrix model is useful to clarify numerical results for population models with continuous densities as well as delta measure age distribution. The applicability in ecotoxicology of the population matrix model formulation for iteroparous populations is discussed.


Asunto(s)
Ecología , Modelos Biológicos , Dinámica Poblacional , Animales , Daphnia/crecimiento & desarrollo , Reproducción
17.
Bull Math Biol ; 63(2): 271-99, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11276527

RESUMEN

Food web models describe the patterns of material and energy flow in communities. In classical food web models the state of each population is described by a single variable which represents, for instance, the biomass or the number of individuals that make up the population. However, in a number of models proposed recently in the literature the individual organisms consist of two components. In addition to the structural component there is an internal pool of nutrients, lipids or reserves. Consequently the population model for each trophic level is described by two state variables instead of one. As a result the classical predator-prey interaction formalisms have to be revised. In our model time budgets with actions as searching and handling provide the formulation of the functional response for both components. In the model, assimilation of the ingested two prey components is done in parallel and the extracted energy is added to a predators reserve pool. The reserves are used for vital processes; growth, reproduction and maintenance. We will explore the top-down modelling approach where the perspective is from the community. We will demonstrate that this approach facilitates a check on the balance equations for mass and energy at this level of organization. Here it will be shown that, if the individual is allowed to shrink when the energy reserves are in short to pay the maintenance costs, the growth process has to be 100% effective. This is unrealistic and some alternative model formulations are discussed. The long-term dynamics of a microbial food chain in the chemostat are studied using bifurcation analysis. The dilution rate and the concentration of nutrients in the reservoir are the bifurcation parameters. The studied microbial bi-trophic food chain with two-component populations shows chaotic behaviour.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional , Bacterias/metabolismo , Reactores Biológicos/microbiología , Ingestión de Energía/fisiología
18.
Math Biosci ; 169(2): 109-28, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11166318

RESUMEN

The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension by 1 for the study of the asymptotic dynamic behaviour. The intersections of the orbits with a Poincaré plane, after the transient has died out, yield a two-dimensional Poincaré next-return map. When chaotic behaviour occurs, all image points of this next-return map appear to lie close to a single curve in the intersection plane. This motivated the study of a one-dimensional bi-modal, non-invertible map of which the graph resembles this curve. We will show that the bifurcation structure of the food chain model can be understood in terms of the local and global bifurcations of this one-dimensional map. Homoclinic and heteroclinic connecting orbits and their global bifurcations are discussed also by relating them to their counterparts for a two-dimensional map which is invertible like the next-return map. In the global bifurcations two homoclinic or two heteroclinic orbits collide and disappear. In the food chain model two attractors coexist; a stable limit cycle where the top-predator is absent and an interior attractor. In addition there is a saddle cycle. The stable manifold of this limit cycle forms the basin boundary of the interior attractor. We will show that this boundary has a complicated structure when there are heteroclinic orbits from a saddle equilibrium to this saddle limit cycle. A homoclinic bifurcation to a saddle limit cycle will be associated with a boundary crisis where the chaotic attractor disappears suddenly when a bifurcation parameter is varied. Thus, similar to a tangent local bifurcation for equilibria or limit cycles, this homoclinic global bifurcation marks a region in the parameter space where the top-predator goes extinct. The 'Paradox of Enrichment' says that increasing the concentration of nutrient input can cause destabilization of the otherwise stable interior equilibrium of a bi-trophic food chain. For a tri-trophic food chain enrichment of the environment can even lead to extinction of the highest trophic level.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Reactores Biológicos , Cómputos Matemáticos , Conducta Predatoria
19.
J Theor Biol ; 207(2): 217-30, 2000 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-11034830

RESUMEN

We consider two numerical methods for the solution of a physiologically structured population (PSP) model with multiple life stages and discrete event reproduction. The model describes the dynamic behaviour of a predator-prey system consisting of rotifers predating on algae. The nitrate limited algal prey population is modelled unstructured and described by an ordinary differential equation (ODE). The formulation of the rotifer dynamics is based on a simple physiological model for their two life stages, the egg and the adult stage. An egg is produced when an energy buffer reaches a threshold value. The governing equations are coupled partial differential equations (PDE) with initial and boundary conditions. The population models together with the equation for the dynamics of the nutrient result in a chemostat model. Experimental data are used to estimate the model parameters. The results obtained with the explicit finite difference (FD) technique compare well with those of the Escalator Boxcar Train (EBT) method. This justifies the use of the fast FD method for the parameter estimation, a procedure which involves repeated solution of the model equations.


Asunto(s)
Modelos Estadísticos , Dinámica Poblacional , Rotíferos/fisiología , Animales , Metabolismo Energético , Eucariontes , Cadena Alimentaria , Óvulo
20.
C R Acad Sci III ; 323(1): 99-111, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10742915

RESUMEN

The dynamics of a simple food web, including multiple substrates and predator-prey interactions, is studied. An individual-based model is presented that describes the intracellular composition of the biomass of each population with two components: reserves and structural biomass. The model describes the simultaneous uptake of multiple substrates via specific carriers and their assimilation into reserve energy via multiple assimilation pathways. The available energy is used for maintenance and growth. Parameters are estimated by curve-fitting data from the literature under the condition that the elemental balances and the enthalpy balances are met. The proposed model provides an adequate description of the macromolecular composition of biomass. The model is not too complicated to be of use in the study of food webs. The consequences of the presence of intracellular components in a food web on its long-term dynamics are investigated with bifurcation analysis.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Biomasa , Metabolismo Energético , Crecimiento , Matemática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA