Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 45664, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378779

RESUMEN

The quantum anomalous Hall effect has been theoretically predicted and experimentally verified in magnetic topological insulators. In addition, the surface states of these materials exhibit a hedgehoglike "spin" texture in momentum space. Here, we apply the previously formulated low-energy model for Bi2Se3, a parent compound for magnetic topological insulators, to a slab geometry in which an exchange field acts only within one of the surface layers. In this sample set up, the hedgehog transforms into a skyrmion texture beyond a critical exchange field. This critical field marks a transition between two topologically distinct phases. The topological phase transition takes place without energy gap closing at the Fermi level and leaves the transverse Hall conductance unchanged and quantized to e2/2h. The momentum-space skyrmion texture persists in a finite field range. It may find its realization in hybrid heterostructures with an interface between a three-dimensional topological insulator and a ferromagnetic insulator.

2.
Sci Rep ; 5: 15302, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477669

RESUMEN

The verification of topological superconductivity has become a major experimental challenge. Apart from the very few spin-triplet superconductors with p-wave pairing symmetry, another candidate system is a conventional, two-dimensional (2D) s-wave superconductor in a magnetic field with a sufficiently strong Rashba spin-orbit coupling. Typically, the required magnetic field to convert the superconductor into a topologically non-trivial state is however by far larger than the upper critical field H(c2), which excludes its realization. In this article, we argue that this problem can be overcome by rotating the magnetic field into the superconducting plane. We explore the character of the superconducting state upon changing the strength and the orientation of the magnetic field and show that a topological state, established for a sufficiently strong out-of-plane magnetic field, indeed extends to an in-plane field orientation. We present a three-band model applicable to the superconducting interface between LaAlO3 and SrTiO3, which should fulfil the necessary conditions to realize a topological superconductor.

3.
J Phys Condens Matter ; 25(36): 362201, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23934775

RESUMEN

Two-dimensional electron systems at oxide interfaces are often influenced by a Rashba type spin-orbit coupling, which is tunable by a transverse electric field. Ferromagnetism near the interface can simultaneously induce strong local magnetic fields. This combination of spin-orbit coupling and magnetism leads to asymmetric two-sheeted Fermi surfaces, on which either intra- or inter-band pairing is favored. The superconducting order parameters are derived within a microscopic pairing model realizing both the Bardeen-Cooper-Schrieffer superconductor with inter-band pairing and a mixed parity state with finite-momentum intra-band pairing. We present a phase diagram for the superconducting groundstates and analyze the density of states, the spectra, and the momentum distribution functions of the different phases. The results are discussed in the context of superconductivity and ferromagnetism at LaAlO3-SrTiO3 interfaces and superconductors with broken inversion symmetry.

4.
Phys Rev Lett ; 107(18): 187001, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22107666

RESUMEN

Striped high-T(c) superconductors such as La(2-y-x)Nd(y)Sr(x)CuO(4) and La(2-x)Ba(x)CuO(4) near x = 1/8 show a fascinating competition between spin and charge order and superconductivity. A theory for these systems therefore has to capture both the spin correlations of an antiferromagnet and the pair correlations of a superconductor. For this purpose we present here an effective Hartree-Fock theory incorporating both electron pairing with finite center-of-mass momentum and antiferromagnetism. We show that this theory reproduces the key experimental features such as the formation of the antiferromagnetic stripe patterns at 7/8 band filling or the quasi-one-dimensional electronic structure observed by photoemission spectroscopy.

5.
Phys Rev Lett ; 97(18): 187001, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-17155569

RESUMEN

For heterostructures of ultrathin, strongly correlated copper-oxide films and dielectric perovskite layers, we predict inhomogeneous electronic interface states. Our study is based on an extended Hubbard model for the cuprate film. The interface is implemented by a coupling to the electron and phonon degrees of freedom of the dielectric oxide layer. We find that electronic ordering in the film is associated with a strongly inhomogeneous polaron effect. We propose to consider the interfacial tuning as a powerful mechanism to control the charge ordering in correlated electronic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA