Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 854: 158670, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099952

RESUMEN

Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary.


Asunto(s)
Estuarios , Isótopos , Humedales , Biodiversidad , Lípidos
2.
Microbiologyopen ; 10(6): e1253, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34821475

RESUMEN

The bacterial communities of Caulerpa lentillifera were studied during an outbreak of an unknown disease in a sea grape farm from Vietnam. Clear differences between healthy and diseased cases were observed at the order, genus, and Operational Taxonomic Unit (OTU) level. A richer diversity was detected in the diseased thalli of C. lentillifera, as well as the dominance of the orders Flavobacteriales (phylum Bacteroidetes) and Phycisphaerales (Planctomycetes). Aquibacter, Winogradskyella, and other OTUs of the family Flavobacteriaceae were hypothesized as detrimental bacteria, this family comprises some well-known seaweed pathogens. Phycisphaera together with other Planctomycetes and Woeseia were probably saprophytes of C. lentillifera. The Rhodobacteraceae and Rhodovulum dominated the bacterial community composition of healthy C. lentillifera. The likely beneficial role of Bradyrhizobium, Paracoccus, and Brevundimonas strains on nutrient cycling and phytohormone production was discussed. The bleaching of diseased C. lentillifera might not only be associated with pathogens but also with an oxidative response. This study offers pioneering insights on the co-occurrence of C. lentillifera-attached bacteria, potential detrimental or beneficial microbes, and a baseline for understanding the C. lentillifera holobiont. Further applied and basic research is urgently needed on C. lentillifera microbiome, shotgun metagenomic, metatranscriptomic, and metabolomic studies as well as bioactivity assays are recommended.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Caulerpa/microbiología , Microbiota , Enfermedades de las Plantas/microbiología , Bacterias/clasificación , Caulerpa/fisiología , Interacciones Microbiota-Huesped
3.
Mar Environ Res ; 167: 105286, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33677173

RESUMEN

The biochemical composition and fluorescence properties of DOM were assessed in relation to phytoplankton and major aquatic bacterial clades in a regenerative area of the Argentine Shelf. DOM was mainly of autochthonous biological origin, containing humic- and protein-like substances of medium degree of unsaturation and diagenesis. Biochemical-DOM accounted for 25% of total DOC, being dissolved combined amino acids (DCAA) the dominant fraction followed by free carbohydrates. Phytoplankton was the main source of serine, alanine, and valine, and particulate carbohydrates. Gammaproteobacteria abundance correlated negatively with ammonium and positively with DCAA, suggesting a coupling between ammonium consumption and refractory amino acid production. A preferential utilization of alanine, leucine and threonine as nitrogen source was inferred from the distribution of Cytophaga-Flavobacteria-Bacteroidete in relation with dissolved free amino acids (DFAA). Notably, Alpha- and Betaproteobacteria correlated with the large pool (75%) of chemically unidentified DOC and not with DCAA or dissolved combined carbohydrates. Particularly, Alphaproteobacteria (∼40% of EUB total heterotrophic bacteria) either significantly contribute to the production of the "humic", refractory fraction of marine DOM, or the latter impairs resource control on their abundance. Spatial heterogeneity inherent to coastal-shelf areas drives important regional variability in the biochemical properties of DOM.


Asunto(s)
Carbono , Sustancias Húmicas , Bacterias , Sustancias Húmicas/análisis , Nitrógeno/análisis , Fitoplancton
4.
J Vet Med Sci ; 83(4): 630-636, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33612661

RESUMEN

The aims of this study were to investigate prevalence, O-genotype, and virulence gene profile including Shiga toxin (Stx) 2 gene-subtype of Stx-producing Escherichia coli (STEC) in beef cattle from the Bahía Blanca in Argentina. Rectal swabs were collected from 283 beef cattle in 2012. stx genes were detected in 90 (32%) out of the 283 rectal swabs by stx gene-specific PCR assay. The positive cases were 13 with stx1, 58 with stx2, and 19 with both stx1 and stx2. Among 90 stx gene-positive samples, 45 STEC strains were isolated, which included 3 stx1, 34 stx2, and eight stx1 and stx2 genes positive isolates. O-genotyping grouped 45 STEC strains into 19 different O-genotypes such as Og8, Og145, Og171, Og185 (4 from each), Og22, Og153, Og157 (3 from each) and others. Various stx2 gene-subtypes were identified in 42 STEC strains: 13 positive cases for stx2a, 11 for stx2c, 3 for stx2g, 10 for stx2a and stx2d, 4 for stx2a and stx2c, and 1 for stx2b, stx2c and stx2g. efaI gene, generally prevalent in clinical strains, was detected in relatively high in the STEC strains. These data suggest that stx2a and stx2c were distributed not only in O145 and O157 but also in minor O-genotypes of STEC in Argentina.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Argentina/epidemiología , Bovinos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Genotipo , Prevalencia , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética
5.
Front Microbiol ; 11: 594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351470

RESUMEN

The highly populated coasts of the Bay of Bengal are particularly vulnerable to water-borne diseases, pollution and climatic extremes. The environmental factors behind bacterial community composition and Vibrio distribution were investigated in an estuarine system of a cholera-endemic region in the coastline of Bangladesh. Higher temperatures and sewage pollution were important drivers of the abundance of toxigenic Vibrio cholerae. A closer relation between non-culturable Vibrio and particulate organic matter (POM) was inferred during the post-monsoon. The distribution of operational taxonomic units (OTUs) of Vibrio genus was likely driven by salinity and temperature. The resuspension of sediments increased Vibrio abundance and organic nutrient concentrations. The δ13C dynamic in POM followed an increasing gradient from freshwater to marine stations; nevertheless, it was not a marker of sewage pollution. Bacteroidales and culturable coliforms were reliable indicators of untreated wastewater during pre and post-monsoon seasons. The presumptive incorporation of depleted-ammonium derived from ammonification processes under the hypoxic conditions, by some microorganisms such as Cloacibacterium and particularly by Arcobacter nearby the sewage discharge, contributed to the drastic 15N depletion in the POM. The likely capacity of extracellular polymeric substances production of these taxa may facilitate the colonization of POM from anthropogenic origin and may signify important properties for wastewater bioremediation. Genera of potential pathogens other than Vibrio associated with sewage pollution were Acinetobacter, Aeromonas, Arcobacter, and Bergeyella. The changing environmental conditions of the estuary favored the abundance of early colonizers and the island biogeography theory explained the distribution of some bacterial groups. This multidisciplinary study evidenced clearly the eutrophic conditions of the Karnaphuli estuary and assessed comprehensively its current bacterial baseline and potential risks. The prevailing conditions together with human overpopulation and frequent natural disasters, transform the region in one of the most vulnerable to climate change. Adaptive management strategies are urgently needed to enhance ecosystem health.

6.
PLoS One ; 15(2): e0221543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32097429

RESUMEN

BACKGROUND: Anthropogenic perturbations have strong impact on water quality and ecological health of mangrove areas of Indian Sundarbans. Diversity in microbial community composition is important causes for maintaining the health of the mangrove ecosystem. However, microbial communities of estuarine water in Indian Sundarbans mangrove areas and environmental determinants that contribute to those communities were seldom studied. METHODS: Nevertheless, this study attempted first to report bacterial and archaeal communities simultaneously in the water from Matla River and Thakuran River of Maipith coastal areas more accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to assess the capability of the environmental parameters for explaining the variation in microbial community composition. RESULTS: Our investigation indicates the dominancy of halophilic marine bacteria from families Flavobacteriaceae and OM1 clade in the water with lower nutrient load collected from costal regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions, changes in bacterial communities in Open Marine Water (OMW) were detected, where some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobacteracea almost equally (18% of the total community) dominated in both sites. Minor variation in the composition of archaeal community was also observed between OMW and ISM. Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutrients for OMW and for ISM, salinity and total nitrogen was responsible for explaining the changes in their respective microbial community composition. CONCLUSIONS: Our study contributes the first conclusive overview on how do multiple environmental/anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban estuary water and consequently the microbial communities in concert. However, systematic approaches with more samples for evaluating the effect of environmental pollutions on mangrove microbial communities are recommended.


Asunto(s)
Microbiota , Microbiología del Agua , Humedales , Bacterias/genética , Bacterias/aislamiento & purificación , Monitoreo del Ambiente , Estuarios , Eutrofización , India , Ríos/microbiología
7.
Front Microbiol ; 9: 2836, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532746

RESUMEN

Saharan dust input and seasonal upwelling along North-West Africa provide a model system for studying microbial processes related to the export and recycling of nutrients. This study offers the first molecular characterization of prokaryotic particle-attached (PA; >3.0 µm) and free-living (FL; 0.2-3.0 µm) players in this important ecosystem during August 2016. Environmental drivers for alpha-diversity, bacterial community composition, and differences between FL and PA fractions were identified. The ultra-oligotrophic waters off Senegal were dominated by Cyanobacteria while higher relative abundances of Alphaproteobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes (known particle-degraders) occurred in the upwelling area. Temperature, proxy for different water masses, was the best predictor for changes in FL communities. PA community variation was best explained by temperature and ammonium. Bray Curtis dissimilarities between FL and PA were generally very high and correlated with temperature and salinity in surface waters. Greatest similarities between FL and PA occurred at the deep chlorophyll maximum, where bacterial substrate availability was likely highest. This indicates that environmental drivers do not only influence changes among FL and PA communities but also differences between them. This could provide an explanation for contradicting results obtained by different studies regarding the dissimilarity/similarity between FL and PA communities and their biogeochemical functions.

8.
Syst Appl Microbiol ; 40(5): 314-320, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28648723

RESUMEN

Chitin is the second most abundant polymer on Earth, playing a crucial role in the biogeochemical cycles. A core issue for studying its processing in aquatic systems is the identification and enumeration of chitin-containing particles and organisms, ideally in a manner that can be directly linked to bulk chitin quantification. The aim of this study was the development of such a technique. We successfully combined the methodology of bulk chitin determination using wheat germ agglutinin (FITC-WGA) for staining chitin-containing particles and organisms along with CARD-FISH staining of either chitin-containing eukaryotic cells or bacteria associated with them. Environmental chitin staining was successfully applied to natural water samples. Fungal hyphae, diatoms, and dinoflagellates, sestonic aggregates and chitin-containing structures derived from metazoa were observed. Also, hybridized bacteria attached to chitinaceous debris were clearly visualized. Finally, as proof of principle, cultured yeast cells were simultaneously-targeted by FITC-WGA and the EUK516 probe without exhibiting any interference between both stains. The presented approach appears as a powerful tool to evaluate the contribution of different size classes and organisms to chitin production and consumption, opening the possibility for application of single-cell approaches targeting the ecophysiology of chitin transformations in aquatic systems.


Asunto(s)
Bacterias/clasificación , Quitina/análisis , Diatomeas/clasificación , Dinoflagelados/clasificación , Hongos/clasificación , Hibridación Fluorescente in Situ/métodos , Bacterias/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Coloración y Etiquetado/métodos , Aglutininas del Germen de Trigo/química
9.
Sci Total Environ ; 579: 646-656, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871750

RESUMEN

The ecology of the most relevant Vibrio species for human health and their relation to water quality and biogeochemistry were studied in two estuaries in Argentinian Patagonia. Vibrio cholerae and Vibrio parahaemolyticus were reported in >29% of cases at the Río Colorado and Río Negro estuaries. Neither the pandemic serogroups of Vibrio cholerae O1, Vibrio cholerae O139 nor the cholera toxin gene were detected in this study. However, several strains of V. cholerae (not O1 or O139) are able to cause human disease or acquire pathogenic genes by horizontal transfer. Vibrio vulnificus was detected only in three instances in the microplankton fraction of the Río Negro estuary. The higher salinity in the Río Colorado estuary and in marine stations at both estuaries favours an abundance of culturable Vibrio. The extreme peaks for ammonium, heterotrophic bacteria and faecal coliforms in the Río Negro estuary supported a marked impact on sewage discharge. Generally, the more pathogenic strains of Vibrio have a faecal origin. Salinity, pH, ammonium, chlorophyll a, silicate and carbon/nitrogen ratio of suspended organic particulates were the primary factors explaining the distribution of culturable bacteria after distance-based linear models. Several effects of dissolved organic carbon on bacterial distribution are inferred. Global change is expected to increase the trophic state and the salinisation of Patagonian estuaries. Consequently, the distribution and abundance of Vibrio species is projected to increase under future changing baselines. Adaptation strategies should contribute to sustaining good water quality to buffer climate- and anthropogenic- driven impacts.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Vibrio/crecimiento & desarrollo , Microbiología del Agua , Argentina
10.
Mar Pollut Bull ; 91(2): 554-62, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25194878

RESUMEN

The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems.


Asunto(s)
Ecosistema , Estuarios , Calidad del Agua , Agricultura , Argentina , Clima , Cambio Climático , Humanos , Oxígeno/análisis , Salinidad , Aguas del Alcantarillado , Contaminantes del Agua/análisis , Humedales
11.
Environ Monit Assess ; 186(5): 3139-48, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24415133

RESUMEN

The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (∼ 9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ∼ 83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ(13)C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ(15)N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Argentina , Ambiente , Nitrógeno/normas , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/normas , Material Particulado/análisis , Material Particulado/normas , Fósforo/normas , Plancton , Ríos/química , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...