Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 140(5): 1267-1279, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28335020

RESUMEN

Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.


Asunto(s)
Edema Encefálico/genética , Edema Encefálico/patología , Cerebelo/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Atrofia Óptica/genética , Atrofia Óptica/patología , Espasmos Infantiles/genética , Espasmos Infantiles/patología , Animales , Complejo del Señalosoma COP9 , Movimiento Celular/genética , Movimiento Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Cerebelo/metabolismo , Edema/complicaciones , Edema/genética , Exoma/genética , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Microcefalia/complicaciones , Microcefalia/genética , Mutación Missense/genética , Mutación Missense/fisiología , Neuronas/metabolismo , Proteínas Nucleares/biosíntesis , Análisis de Secuencia de ADN , Factores de Transcripción/biosíntesis , Pez Cebra
2.
Glia ; 63(3): 400-11, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25327891

RESUMEN

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal-recessively inherited neurodegenerative disorder characterized by severely incapacitating myoclonus, seizures, and ataxia, and caused by loss-of-function mutations in the cystatin B gene (CSTB). A central neuropathological finding in the Cstb(-/-) mouse, an animal model for EPM1, is early microglial activation, which precedes astroglial activation, neuronal loss, and onset of myoclonus, thus implying a critical role for microglia in EPM1 pathogenesis. Here, we characterized phenotypic and functional properties of microglia from Cstb(-/-) mice utilizing brain tissue, microglia directly isolated from the brain, and primary microglial cultures. Our results show significantly higher Cstb mRNA expression in microglia than in neurons and astrocytes. In Cstb(-/-) mouse brain, expression of the inflammatory marker p-p38 MAPK and the proportion of both pro-inflammatory M1 and anti-inflammatory M2 microglia is higher than in control mice. Moreover, M1/M2 polarization of microglia in presymptomatic Cstb(-/-) mice is, compared to control mice, skewed towards M2 type at postnatal day 14 (P14), but towards M1 type at P30, a time point associated with onset of myoclonus. At this age, the high expression of both pro-inflammatory inducible nitric oxide synthase (iNOS) and anti-inflammatory arginase 1 (ARG1) in Cstb(-/-) mouse cortex is accompanied by the presence of peripheral immune cells. Consistently, activated Cstb(-/-) microglia show elevated chemokine release and chemotaxis. However, their MHCII surface expression is suppressed. Taken together, our results link CSTB deficiency to neuroinflammation with early activation and dysfunction of microglia and will open new avenues for therapeutic interventions for EPM1.


Asunto(s)
Encéfalo/inmunología , Cistatina B/deficiencia , Microglía/fisiología , Síndrome de Unverricht-Lundborg/inmunología , Animales , Arginasa/metabolismo , Astrocitos/metabolismo , Células Cultivadas , Cistatina B/genética , Modelos Animales de Enfermedad , Genes MHC Clase II/fisiología , Granulocitos/fisiología , Macrófagos/fisiología , Ratones de la Cepa 129 , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Linfocitos T/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Bone Rep ; 3: 76-82, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28377970

RESUMEN

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb-/-) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb-/- mice. Histology from Cstb-/- mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb-/- group. Cstb-/- osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb-/- mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation.

4.
PLoS One ; 9(2): e89321, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586687

RESUMEN

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited neurodegenerative disease, manifesting with myoclonus, seizures and ataxia, caused by mutations in the cystatin B (CSTB) gene. With the aim of understanding the molecular basis of pathogenetic events in EPM1 we characterized gene expression changes in the cerebella of pre-symptomatic postnatal day 7 (P7) and symptomatic P30 cystatin B -deficient (Cstb(-/-) ) mice, a model for the disease, and in cultured Cstb(-/-) cerebellar granule cells using a pathway-based approach. Differentially expressed genes in P7 cerebella were connected to synaptic function and plasticity, and in cultured cerebellar granule cells, to cell cycle, cytoskeleton, and intracellular transport. In particular, the gene expression data pinpointed alterations in GABAergic pathway. Electrophysiological recordings from Cstb(-/-) cerebellar Purkinje cells revealed a shift of the balance towards decreased inhibition, yet the amount of inhibitory interneurons was not declined in young animals. Instead, we found diminished number of GABAergic terminals and reduced ligand binding to GABAA receptors in Cstb(-/-) cerebellum. These results suggest that alterations in GABAergic signaling could result in reduced inhibition in Cstb(-/-) cerebellum leading to the hyperexcitable phenotype of Cstb(-/-) mice. At P30, the microarray data revealed a marked upregulation of immune and defense response genes, compatible with the previously reported early glial activation that precedes neuronal degeneration. This further implies the role of early-onset neuroinflammation in the pathogenesis of EPM1.


Asunto(s)
Cerebelo/metabolismo , Cistatina B/genética , Regulación de la Expresión Génica , Epilepsias Mioclónicas Progresivas/genética , Neuronas/metabolismo , Animales , Animales Recién Nacidos , Cerebelo/inmunología , Modelos Animales de Enfermedad , Femenino , Neuronas GABAérgicas/metabolismo , Ligandos , Masculino , Ratones , Ratones Noqueados , Unión Proteica , Células de Purkinje/metabolismo , Receptores de GABA-A/metabolismo , Reproducibilidad de los Resultados , Potenciales Sinápticos , Factores de Tiempo
5.
PLoS One ; 9(6): e90709, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24603771

RESUMEN

Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B-deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B-deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B-deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B-deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B-deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation.


Asunto(s)
Cerebelo/patología , Cistatina B/deficiencia , Tálamo/patología , Síndrome de Unverricht-Lundborg/patología , Animales , Imagen de Difusión Tensora , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Ratones Noqueados , Tamaño de los Órganos
6.
Radiology ; 269(1): 232-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23788720

RESUMEN

PURPOSE: To study white matter (WM) changes in patients with Unverricht-Lundborg progressive myoclonus epilepsy (EPM1) caused by mutations in the cystatin B gene and in the cystatin B-deficient (Cstb-/-) mouse model and to validate imaging findings with histopathologic analysis of mice. MATERIALS AND METHODS: Informed consent was obtained and the study was approved by an institutional ethics committee. Animal work was approved by the Animal Experiment Board of Finland. Diffusion-tensor imaging and tract-based spatial statistics (TBSS) were used to compare fractional anisotropic (FA) results and axial, radial, and mean diffusion among patients with EPM1 (n = 19) and control subjects (n = 18). Ex vivo diffusion-tensor imaging and TBSS were used to compare Cstb-/- mice (n = 9) with wild controls (n = 4). Areas of FA decrease in mice were characterized by means of immunohistochemical analysis and transmission electron microscopy. Student t test statistics were applied to report significant findings (threshold-free cluster enhancement, P < .05). RESULTS: Patients with EPM1 showed significantly (P < .05) reduced FA and increased radial and mean diffusion in all major WM tracts compared with those of control subjects, shown as global FA decrease along the TBSS skeleton (0.41 ± 0.03 vs 0.45 ± 0.02, respectively; P < 5 × 10(-6)). Cstb-/- mice exhibited significantly reduced FA (P < .05) and antimyelin basic protein staining. Transmission electron microscopy revealed degenerating axons in Cstb-/- mice vs controls (979 axons counted, 51 degenerating axons; 2.09 ± 0.29 per field vs 1072 axons counted, nine degenerating axons; 0.48 ± 0.19 per field; P = .002). CONCLUSION: EPM1 is characterized by widespread alterations in subcortical WM, the thalamocortical system, and the cerebellum, which result in axonal degeneration and WM loss. These data suggest that motor disturbances and other symptoms in patients with EPM1 involve not only the cortical system but also the thalamocortical system and cerebellum.


Asunto(s)
Cistatina B/deficiencia , Imagen por Resonancia Magnética/métodos , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Síndrome de Unverricht-Lundborg/metabolismo , Síndrome de Unverricht-Lundborg/patología , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Investigación Biomédica Traslacional , Adulto Joven
7.
J Med Genet ; 49(6): 391-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22693283

RESUMEN

BACKGROUND: The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background. METHODS: Homozygosity mapping was applied on genome-wide single nucleotide polymorphism data of 18 Turkish patients. The potassium channel tetramerisation domain-containing 7 (KCTD7) gene, previously associated with PME in a single inbred family, was screened for mutations. The spatiotemporal expression of KCTD7 was assessed in cellular cultures and mouse brain tissue. RESULTS: Overlapping homozygosity in 8/18 patients defined a 1.5 Mb segment on 7q11.21 as the major candidate locus. Screening of the positional candidate gene KCTD7 revealed homozygous missense mutations in two of the eight cases. Screening of KCTD7 in a further 132 PME patients revealed four additional mutations (two missense, one in-frame deletion, and one frameshift-causing) in five families. Eight patients presented with myoclonus and epilepsy and one with ataxia, the mean age of onset being 19 months. Within 2 years after onset, progressive loss of mental and motor skills ensued leading to severe dementia and motor handicap. KCTD7 showed cytosolic localisation and predominant neuronal expression, with widespread expression throughout the brain. None of three polypeptides carrying patient missense mutations affected the subcellular distribution of KCTD7. DISCUSSION: These data confirm the causality of KCTD7 defects in PME, and imply that KCTD7 mutation screening should be considered in PME patients with onset around 2 years of age followed by rapid mental and motor deterioration.


Asunto(s)
Mutación , Epilepsias Mioclónicas Progresivas/genética , Canales de Potasio/genética , Animales , Western Blotting , Química Encefálica , Células Cultivadas , Mapeo Cromosómico , Homocigoto , Humanos , Espacio Intracelular , Ratones , Microscopía Fluorescente , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Turquía
8.
Neurobiol Dis ; 47(3): 444-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22569358

RESUMEN

The neuronal ceroid lipofuscinoses constitute the most common group of childhood neurodegenerative disorders. These devastating disorders still remain without effective treatment. The use of animal models has provided significant information about NCL pathogenesis, highlighting early glial activation and neuron loss in specific brain regions of affected animals. Here, we have characterized the timing and regional-specificity of the pathological events of CLN8 disease utilizing the Cln8 deficient mouse model, Cln8(mnd). We have studied the progression of neuron loss, astrocytosis and microglial activation from early to moderately symptomatic (1, 3 and 5 months) and late symptomatic (8 months) mice. In Cln8 deficiency, the somatosensory pathway comprising the thalamic ventral posterior nucleus (VPM/VPL) and the primary somatosensory cortex (S1BF) was found to be the most affected relay system. Scattered microglia that appeared partially activated were already present at 3 months of age, followed by astrocytosis and the loss of thalamic relay neurons at 5 months of age, with all these phenotypes and glial activation becoming more pronounced with disease progression. Reactive changes followed a similar pattern in the corresponding cortical target regions, but only moderate neuron loss was detected. Compared to the somatosensory system, in the visual thalamocortical pathway, neuron loss appeared relatively late in the disease, at 8 months. Neuron loss was preceded by glial activation in the dorsal lateral geniculate nucleus (LGNd) and in the primary visual cortex (V1). Taken together these data highlight the pathological targeting of the somatosensory thalamocortical pathway in Cln8 deficiency, in common with other forms of NCL. However, in contrast to other previously characterized NCL models, the Cln8(mnd) mouse shows relatively mild and late appearing pathology within the thalamocortical visual pathway.


Asunto(s)
Neuroglía/patología , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/patología , Corteza Somatosensorial/patología , Tálamo/patología , Vías Aferentes/fisiología , Factores de Edad , Análisis de Varianza , Animales , Recuento de Células , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/metabolismo , Neuroglía/ultraestructura , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/metabolismo , Neuronas/ultraestructura
9.
Cell Metab ; 15(1): 100-9, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225879

RESUMEN

Somatic stem cell (SSC) dysfunction is typical for different progeroid phenotypes in mice with genomic DNA repair defects. MtDNA mutagenesis in mice with defective Polg exonuclease activity also leads to progeroid symptoms, by an unknown mechanism. We found that Polg-Mutator mice had neural (NSC) and hematopoietic progenitor (HPC) dysfunction already from embryogenesis. NSC self-renewal was decreased in vitro, and quiescent NSC amounts were reduced in vivo. HPCs showed abnormal lineage differentiation leading to anemia and lymphopenia. N-acetyl-L-cysteine treatment rescued both NSC and HPC abnormalities, suggesting that subtle ROS/redox changes, induced by mtDNA mutagenesis, modulate SSC function. Our results show that mtDNA mutagenesis affected SSC function early but manifested as respiratory chain deficiency in nondividing tissues in old age. Deletor mice, having mtDNA deletions in postmitotic cells and no progeria, had normal SSCs. We propose that SSC compartment is sensitive to mtDNA mutagenesis, and that mitochondrial dysfunction in SSCs can underlie progeroid manifestations.


Asunto(s)
ADN Mitocondrial/genética , Células Madre Hematopoyéticas/citología , Células-Madre Neurales/citología , Acetilcisteína/farmacología , Animales , Diferenciación Celular/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón , Eritropoyesis , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Linfopoyesis , Ratones , Ratones Mutantes , Enfermedades Mitocondriales/patología , Mutagénesis , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Oxidación-Reducción , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
10.
Neurobiol Dis ; 46(1): 19-29, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22182690

RESUMEN

CLN5 disease, late infantile variant phenotype neuronal ceroid lipofuscinosis, is a severe neurodegenerative disease caused by mutations in the CLN5 gene, which encodes a lysosomal protein of unknown function. Cln5-deficiency in mice leads to loss of thalamocortical neurons, and glial activation, but the underlying mechanisms are poorly understood. We have now studied the gene expression of Cln5 in the mouse brain and show that it increases gradually with age and differs between neurons and glia, with the highest expression in microglia. In Cln5(-/-) mice, we documented early and significant microglial activation that was already evident at 3 months of age. Loss of Cln5 also leads to defective myelination in vitro and in the developing mouse brain. This was accompanied by early alterations in serum lipid profiles, dysfunctional cellular metabolism and lipid transport in Cln5(-/-) mice. Taken together, these data provide significant new information about events associated with Cln5-deficiency, revealing altered myelination and disturbances in lipid metabolism, together with an early neuroimmune response.


Asunto(s)
Enfermedades Desmielinizantes/fisiopatología , Metabolismo de los Lípidos/fisiología , Glicoproteínas de Membrana/deficiencia , Microglía/metabolismo , Animales , Células Cultivadas , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/patología , Proteínas de Membrana de los Lisosomas , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/metabolismo , Neuronas/patología
11.
J Neuropathol Exp Neurol ; 71(1): 40-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22157618

RESUMEN

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a hereditary neurodegenerative disorder caused by mutations in the cystatin B (CSTB) gene encoding an inhibitor of cysteine proteases. Here, we provide the first detailed description of the onset and progression of pathologic changes in the CNS of Cstb-deficient (Cstb) mice. Our data reveal early and localized glial activation in brain regions where neuron loss subsequently occurs. These changes are most pronounced in the thalamocortical system, with neuron loss occurring first within the cortex and only subsequently in the corresponding thalamic relay nucleus. Microglial activation precedes the emergence of myoclonia and is followed by successive astrocytosis and selective neuron loss. Neuron loss was not detected in thalamic relay nuclei that displayed no glial activation. Microglia showed morphologic changes during disease progression from that of phagocytic brain macrophages in young animals to having thickened branched processes in older animals. These novel data on the timing of pathologic events in the CSTB-deficient brain highlight the potential role of glial activation at the initial stages of the disease. Determining the precise sequence of the neurodegenerative events in Cstb mouse brains will lay the basis for understanding the pathophysiology of EPM1.


Asunto(s)
Cistatina B/deficiencia , Modelos Animales de Enfermedad , Microglía/metabolismo , Microglía/patología , Neuronas/patología , Síndrome de Unverricht-Lundborg/patología , Animales , Encéfalo , Muerte Celular/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Cistatina B/genética , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Factores de Tiempo , Síndrome de Unverricht-Lundborg/genética , Síndrome de Unverricht-Lundborg/metabolismo
12.
J Neurosci ; 29(18): 5910-5, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19420257

RESUMEN

The progressive myoclonus epilepsies, featuring the triad of myoclonus, seizures, and ataxia, comprise a large group of inherited neurodegenerative diseases that remain poorly understood and refractory to treatment. The Cystatin B gene is mutated in one of the most common forms of progressive myoclonus epilepsy, Unverricht-Lundborg disease (EPM1). Cystatin B knockout in a mouse model of EPM1 triggers progressive degeneration of cerebellar granule neurons. Here, we report impaired redox homeostasis as a key mechanism by which Cystatin B deficiency triggers neurodegeneration. Oxidative stress induces the expression of Cystatin B in cerebellar granule neurons, and EPM1 patient-linked mutation of the Cystatin B gene promoter impairs oxidative stress induction of Cystatin B transcription. Importantly, Cystatin B knockout or knockdown sensitizes cerebellar granule neurons to oxidative stress-induced cell death. The Cystatin B deficiency-induced predisposition to oxidative stress in neurons is mediated by the lysosomal protease Cathepsin B. We uncover evidence of oxidative damage, reflected by depletion of antioxidants and increased lipid peroxidation, in the cerebellum of Cystatin B knock-out mice in vivo. Collectively, our findings define a pathophysiological mechanism in EPM1, whereby Cystatin B deficiency couples oxidative stress to neuronal death and degeneration, and may thus provide the basis for novel treatment approaches for the progressive myoclonus epilepsies.


Asunto(s)
Cistationina gamma-Liasa/deficiencia , Neuronas/fisiología , Estrés Oxidativo/genética , Síndrome de Unverricht-Lundborg/fisiopatología , Análisis de Varianza , Animales , Animales Recién Nacidos , Catepsina B , Muerte Celular/genética , Células Cultivadas , Cerebelo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Galactósidos/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Transfección/métodos , Síndrome de Unverricht-Lundborg/genética , Síndrome de Unverricht-Lundborg/patología
13.
Neurobiol Dis ; 34(2): 308-19, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19385065

RESUMEN

Finnish variant LINCL (vLINCL(Fin)) is the result of mutations in the CLN5 gene. To gain insights into the pathological staging of this fatal pediatric disorder, we have undertaken a stereological analysis of the CNS of Cln5 deficient mice (Cln5-/-) at different stages of disease progression. Consistent with human vLINCL(Fin), these Cln5-/- mice displayed a relatively late onset regional atrophy and generalized cortical thinning and synaptic pathology, preceded by early and localized glial responses within the thalamocortical system. However, in marked contrast to other forms of NCL, neuron loss in Cln5-/- mice began in the cortex and only subsequently occurred within thalamic relay nuclei. Nevertheless, as in other NCL mouse models, this progressive thalamocortical neuron loss was still most pronounced within the visual system. These data provide unexpected evidence for a distinctive sequence of neuron loss in the thalamocortical system of Cln5-/- mice, diametrically opposed to that seen in other forms of NCL.


Asunto(s)
Corteza Cerebral/patología , Predisposición Genética a la Enfermedad/genética , Glicoproteínas de Membrana/genética , Degeneración Nerviosa/patología , Lipofuscinosis Ceroideas Neuronales/patología , Tálamo/patología , Edad de Inicio , Animales , Atrofia/genética , Atrofia/patología , Atrofia/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Finlandia , Proteínas de Membrana de los Lisosomas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Tálamo/metabolismo , Tálamo/fisiopatología , Vías Visuales/metabolismo , Vías Visuales/patología , Vías Visuales/fisiopatología
14.
Exp Cell Res ; 314(15): 2895-905, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18621045

RESUMEN

Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na(+), K(+) ATPase. The ion pumping activity of Na(+), K(+) ATPase was unchanged in Cln3(-/-) mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3(-/-) mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na(+), K(+) ATPase were remarkably affected in Cln3(-/-) mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na(+), K(+) ATPase. Most of the processes regulated by multifunctional fodrin and Na(+), K(+) ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na(+), K(+) ATPase may play a role in the neuronal degeneration in JNCL.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Endocitosis/fisiología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Iones/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Lipofuscinosis Ceroideas Neuronales/genética , Neuronas/metabolismo , Neuronas/patología
15.
BMC Genomics ; 9: 146, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18371231

RESUMEN

BACKGROUND: The neuronal ceroid lipofuscinoses (NCL) are a group of children's inherited neurodegenerative disorders, characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of the different forms of NCL suggest that common disease mechanisms may be involved. To explore the NCL-associated disease pathology and molecular pathways, we have previously produced targeted knock-out mice for Cln1 and Cln5. Both mouse-models replicate the NCL phenotype and neuropathology; the Cln1-/- model presents with early onset, severe neurodegenerative disease, whereas the Cln5-/- model produces a milder disease with a later onset. RESULTS: Here we have performed quantitative gene expression profiling of the cortex from 1 and 4 month old Cln1-/- and Cln5-/- mice. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating neuronal growth cone stabilization display similar aberrations in both models. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products; adenylate cyclase-associated protein 1 (Cap1), protein tyrosine phosphatase receptor type F (Ptprf) and protein tyrosine phosphatase 4a2 (Ptp4a2). The evidence from the gene expression data, indicating changes in the growth cone assembly, was substantiated by the immunofluorescence staining patterns of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in cytoskeleton-associated proteins actin and beta-tubulin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. CONCLUSION: Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in INCL and vLINCL. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCLs as well.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Conos de Crecimiento/patología , Glicoproteínas de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Tioléster Hidrolasas/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Western Blotting , Células Cultivadas , Proteína GAP-43/metabolismo , Perfilación de la Expresión Génica , Genotipo , Conos de Crecimiento/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Inmunohistoquímica , Proteínas de Membrana de los Lisosomas , Ratones , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/patología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sinapsinas/metabolismo , Proteínas de Unión al GTP rab3/metabolismo
16.
Hum Mol Genet ; 17(10): 1406-17, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18245779

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disease caused by deficiency of palmitoyl protein thioesterase 1 (PPT1). INCL results in dramatic loss of thalamocortical neurons, but the disease mechanism has remained elusive. In the present work we describe the first interaction partner of PPT1, the F(1)-complex of the mitochondrial ATP synthase, by co-purification and in vitro-binding assays. In addition to mitochondria, subunits of F(1)-complex have been reported to localize in the plasma membrane, and to be capable of acting as receptors for various ligands such as apolipoprotein A-1. We verified here the plasma membrane localization of F(1)-subunits on mouse primary neurons and fibroblasts by cell surface biotinylation and TIRF-microscopy. To gain further insight into the Ppt1-mediated properties of the F(1)-complex, we utilized the Ppt1-deficient Ppt1(Delta ex4) mice. While no changes in the mitochondrial function could be detected in the brain of the Ppt1(Delta ex4) mice, the levels of F(1)-subunits alpha and beta on the plasma membrane were specifically increased in the Ppt1(Delta ex4) neurons. Significant changes were also detected in the apolipoprotein A-I uptake by the Ppt1(Delta ex4) neurons and the serum lipid composition in the Ppt1(Delta ex4) mice. These data indicate neuron-specific changes for F(1)-complex in the Ppt1-deficient cells and give clues for a possible link between lipid metabolism and neurodegeneration in INCL.


Asunto(s)
Colesterol/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , ATPasas de Translocación de Protón/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Animales , Apolipoproteína A-I/sangre , Apolipoproteína A-I/metabolismo , Encéfalo/anomalías , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Membrana Celular/metabolismo , Colesterol/sangre , Complejo II de Transporte de Electrones/metabolismo , Femenino , Humanos , Metabolismo de los Lípidos , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/metabolismo , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/análisis , Tioléster Hidrolasas/sangre , Tioléster Hidrolasas/aislamiento & purificación
17.
Eur J Hum Genet ; 16(8): 961-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18285827

RESUMEN

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessively inherited neurodegenerative disorder characterized by cerebellar ataxia, cataracts, mental retardation, and progressive myopathy. Recently, mutations in the SIL1 gene, which encodes an endoplasmic reticulum (ER) resident cochaperone, were identified as a major cause of MSS. We here report four novel mutations in SIL1, including the first missense substitution p.Leu457Pro described in MSS. In addition, we excluded three functional candidate genes, HSPA5, HYOU1, and AARS, as causative genes in SIL1 mutation-negative patients. To understand the mechanisms of disturbed SIL1 function, we studied the subcellular localization of the missense mutant Leu457Pro protein in COS-1 cells. Moreover, we studied a mutant protein lacking the putative C-terminal ER retrieval signal. In contrast to the wild-type protein's localization to ER and Golgi apparatus, both mutant proteins formed aggregates within the ER depending on the expression level. These data imply that aggregation of mutant proteins may contribute to MSS pathogenesis. The genetic background of a subgroup of patients with MSS remains uncovered.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Mutación Missense/genética , Mutación/genética , Degeneraciones Espinocerebelosas/genética , Adulto , Animales , Células COS , Preescolar , Chlorocebus aethiops , Embrión de Mamíferos , Chaperón BiP del Retículo Endoplásmico , Femenino , Técnica del Anticuerpo Fluorescente , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Neuronas/patología , Linaje , Degeneraciones Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/patología , Fracciones Subcelulares
18.
Epilepsia ; 49(4): 557-63, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18028412

RESUMEN

Unverricht-Lundborg disease (EPM1) is an autosomal recessively inherited neurodegenerative disorder and the most common single cause of progressive myoclonus epilepsy worldwide. Mutations in the gene encoding cystatin B (CSTB), a cysteine protease inhibitor, are responsible for the primary defect underlying EPM1. Here, progress toward understanding the molecular mechanisms in EPM1 is reviewed. We summarize the current knowledge about the CSTB gene and mutations as well as the cellular biology of the CSTB protein with emphasis on data emerging from analysis of EPM1 patients. We shed light on the disease mechanisms of EPM1 based on characterization of the CSTB-deficient mouse model.


Asunto(s)
Cistatinas/genética , Síndrome de Unverricht-Lundborg/genética , Animales , Cistatina B , Cistatinas/deficiencia , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación Missense/genética , Regiones Promotoras Genéticas/genética
19.
Neurobiol Dis ; 28(1): 52-64, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17656100

RESUMEN

Infantile neuronal ceroid lipofuscinosis (INCL) is a severe neurodegenerative disorder of children, characterized by selective death of neocortical neurons. To understand early disease mechanisms in INCL, we have studied Ppt1(Deltaex4) knock-out mouse neurons in culture and acute brain slices. Global transcript profiling showed deregulation of key neuronal functions in knock-out mice including cholesterol metabolism, neuronal maturation, and calcium homeostasis. Cholesterol metabolism showed major changes; sterol biosynthesis was enhanced and steady-state amounts of sterols were altered at the cellular level. Changes were also present in early maturation of Ppt1(Deltaex4) neurons indicated by increased proliferative capacity of neuronal stem cells. Knock-out neurons presented unaltered electrophysiological properties suggesting uncompromised synaptic function in young animals. However, knock-out neurons exhibited more efficient recovery from glutamate-induced calcium transients, possibly indicating neuroprotective activation. This study established that the neuronal deregulation in INCL is linked to neuronal maturation, lipid metabolism and calcium homeostasis.


Asunto(s)
Calcio/metabolismo , Colesterol/metabolismo , Homeostasis , Neuronas/metabolismo , Tioléster Hidrolasas/deficiencia , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Neuronas/citología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Madre/citología , Sinapsis/metabolismo , Sinapsis/patología , Tioléster Hidrolasas/genética
20.
BMC Cell Biol ; 8: 22, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17565660

RESUMEN

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) are collectively the most common type of recessively inherited childhood encephalopathies. The most severe form of NCL, infantile neuronal ceroid lipofuscinosis (INCL), is caused by mutations in the CLN1 gene, resulting in a deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). The deficiency of PPT1 causes a specific death of neocortical neurons by a mechanism, which is currently unclear. To understand the function of PPT1 in more detail, we have further analyzed the basic properties of the protein, especially focusing on possible differences in non-neuronal and neuronal cells. RESULTS: Our study shows that the N-glycosylation of N197 and N232, but not N212, is essential for PPT1's activity and intracellular transport. Deglycosylation of overexpressed PPT1 produced in neurons and fibroblasts demonstrates differentially modified PPT1 in different cell types. Furthermore, antibody internalization assays showed differences in PPT1 transport when compared with a thoroughly characterized lysosomal enzyme aspartylglucosaminidase (AGA), an important observation potentially influencing therapeutic strategies. PPT1 was also demonstrated to form oligomers by size-exclusion chromatography and co-immunoprecipitation assays. Finally, the consequences of disease mutations were analyzed in the perspective of our new results, suggesting that the mutations increase both the degree of glycosylation of PPT1 and its ability to form complexes. CONCLUSION: Our current study describes novel properties for PPT1. We observe differences in PPT1 processing and trafficking in neuronal and non-neuronal cells, and describe for the first time the ability of PPT1 to form complexes. Understanding the basic characteristics of PPT1 is fundamental in order to clarify the molecular pathogenesis behind neurodegeneration in INCL.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Tioléster Hidrolasas/metabolismo , Animales , Aspartilglucosilaminasa/metabolismo , Células COS , Técnicas de Cultivo de Célula , Chlorocebus aethiops , Glicosilación , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Mutación , Neuronas/citología , Neuronas/enzimología , Especificidad de Órganos , Células PC12 , Transporte de Proteínas , Ratas , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...