Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 977, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046483

RESUMEN

Extracellular vesicles (EVs) are released during the storage of red blood cell (RBC) concentrates and might play adverse or beneficial roles throughout the utilization of blood products (transfusion). Knowledge of EV release associated factors and mechanism amends blood product management. In the present work the impact of storage time and medium (blood preserving additive vs isotonic phosphate buffer) on the composition, size, and concentration of EVs was studied using attenuated total reflection infrared (ATR-IR) spectroscopy, microfluidic resistive pulse sensing (MRPS) and freeze-fraction combined transmission electron micrography (FF-TEM). The spectroscopic protein-to-lipid ratio based on amide and the C-H stretching band intensity ratio indicated the formation of various vesicle subpopulations depending on storage conditions. After short storage, nanoparticles with high relative protein content were detected. Spectral analysis also suggested differences in lipid and protein composition, too. The fingerprint region (from 1300 to 1000 cm-1) of the IR spectra furnishes additional information about the biomolecular composition of RBC-derived EVs (REVs) such as adenosine triphosphate (ATP), lactose, glucose, and oxidized hemoglobin. The difference between the vesicle subpopulations reveals the complexity of the REV formation mechanism. IR spectroscopy, as a quick, cost-effective, and label-free technique provides valuable novel biochemical insight and might be used complementary to traditional omics approaches on EVs.


Asunto(s)
Eritrocitos/química , Vesículas Extracelulares/química , Manejo de Especímenes , Cromatografía en Gel , Eritrocitos/citología , Voluntarios Sanos , Humanos , Técnicas Analíticas Microfluídicas , Microscopía Electrónica de Transmisión , Espectrofotometría Infrarroja
2.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360869

RESUMEN

The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called "tandem SH3") and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Dominios Proteicos Ricos en Prolina , Unión Proteica , Dominios Homologos src
3.
Cells ; 10(5)2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068055

RESUMEN

Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.


Asunto(s)
Fosfolípidos/metabolismo , Dominios Homologos src , Familia-src Quinasas/metabolismo , Animales , Sitios de Unión , Humanos , Fosfolípidos/química , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Relación Estructura-Actividad , Familia-src Quinasas/química
4.
Cells ; 10(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802849

RESUMEN

The most commonly mutated isoform of RAS among all cancer subtypes is KRAS. In this review, we focus on the special role of KRAS mutations in colorectal cancer (CRC), aiming to collect recent data on KRAS-driven enhanced cell signalling, in vitro and in vivo research models, and CRC development-related processes such as metastasis and cancer stem cell formation. We attempt to cover the diverse nature of the effects of KRAS mutations on age-related CRC development. As the incidence of CRC is rising in young adults, we have reviewed the driving forces of ageing-dependent CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/genética , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Colorrectales/patología , Humanos , Proteínas Proto-Oncogénicas B-raf/genética
5.
Cells ; 10(1)2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467043

RESUMEN

SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Lípidos/química , Proteínas del Tejido Nervioso/química , Péptidos/química , Secuencias de Aminoácidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Relación Estructura-Actividad , Dominios Homologos src
6.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143131

RESUMEN

Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Diferenciación Celular , Movimiento Celular , Homeostasis , Podosomas/fisiología , Humanos , Transducción de Señal
7.
Cells ; 8(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671862

RESUMEN

Epithelial to mesenchymal transition (EMT) is a multipurpose process involved in wound healing, development, and certain pathological processes, such as metastasis formation. The Tks4 scaffold protein has been implicated in cancer progression; however, its role in oncogenesis is not well defined. In this study, the function of Tks4 was investigated in HCT116 colon cancer cells by knocking the protein out using the CRISPR/Cas9 system. Surprisingly, the absence of Tks4 induced significant changes in cell morphology, motility, adhesion and expression, and localization of E-cadherin, which are all considered as hallmarks of EMT. In agreement with these findings, the marked appearance of fibronectin, a marker of the mesenchymal phenotype, was also observed in Tks4-KO cells. Analysis of the expression of well-known EMT transcription factors revealed that Snail2 was strongly overexpressed in cells lacking Tks4. Tks4-KO cells showed increased motility and decreased cell-cell attachment. Collagen matrix invasion assays demonstrated the abundance of invasive solitary cells. Finally, the reintroduction of Tks4 protein in the Tks4-KO cells restored the expression levels of relevant key transcription factors, suggesting that the Tks4 scaffold protein has a specific and novel role in EMT regulation and cancer progression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Neoplasias del Colon/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Movimiento Celular/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Invasividad Neoplásica , Transducción de Señal/genética
8.
Cells ; 8(8)2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387265

RESUMEN

Obesity and adipocyte malfunction are related to and arise as consequences of disturbances in signaling pathways. Tyrosine kinase substrate with four Src homology 3 domains (Tks4) is a scaffold protein that establishes a platform for signaling cascade molecules during podosome formation and epidermal growth factor receptor (EGFR) signaling. Several lines of evidence have also suggested that Tks4 has a role in adipocyte biology; however, its roles in the various types of adipocytes at the cellular level and in transcriptional regulation have not been studied. Therefore, we hypothesized that Tks4 functions as an organizing molecule in signaling networks that regulate adipocyte homeostasis. Our aims were to study the white and brown adipose depots of Tks4 knockout (KO) mice using immunohistology and western blotting and to analyze gene expression changes regulated by the white, brown, and beige adipocyte-related transcription factors via a PCR array. Based on morphological differences in the Tks4-KO adipocytes and increased uncoupling protein 1 (UCP1) expression in the white adipose tissue (WAT) of Tks4-KO mice, we concluded that the beigeing process was more robust in the WAT of Tks4-KO mice compared to the wild-type animals. Furthermore, in the Tks4-KO WAT, the expression profile of peroxisome proliferator-activated receptor gamma (PPARγ)-regulated adipogenesis-related genes was shifted in favor of the appearance of beige-like cells. These results suggest that Tks4 and its downstream signaling partners are novel regulators of adipocyte functions and PPARγ-directed white to beige adipose tissue conversion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adipocitos Beige/metabolismo , Homeostasis , Proteínas Adaptadoras Transductoras de Señales/genética , Adipocitos Beige/citología , Adipocitos Blancos/citología , Adipocitos Blancos/metabolismo , Adipogénesis , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , PPAR gamma/genética , PPAR gamma/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Sci Rep ; 9(1): 5781, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962481

RESUMEN

The main driver of osteoporosis is an imbalance between bone resorption and formation. The pathogenesis of osteoporosis has also been connected to genetic alterations in key osteogenic factors and dysfunction of bone marrow mesenchymal stem/stromal cells (BM-MSCs). Tks4 (encoded by the Sh3pxd2b gene) is a scaffold protein involved in podosome organization. Homozygous mutational inactivation of Sh3pxd2b causes Frank-ter Haar syndrome (FTHS), a genetic disease that affects bone tissue as well as eye, ear, and heart functions. To date, the role of Tks4 in adult bone homeostasis has not been investigated. Therefore, the aim of this study was to analyze the facial and femoral bone phenotypes of Sh3pxd2b knock-out (KO) mice using micro-CT methods. In addition to the analysis of the Sh3pxd2b-KO mice, the bone microstructure of an FTHS patient was also examined. Macro-examination of skulls from Tks4-deficient mice revealed craniofacial malformations that were very similar to symptoms of the FTHS patient. The femurs of the Sh3pxd2b-KO mice had alterations in the trabecular system and showed signs of osteoporosis, and, similarly, the FTHS patient also showed increased trabecular separation/porosity. The expression levels of the Runx2 and osteocalcin bone formation markers were reduced in the bone and bone marrow of the Sh3pxd2b-KO femurs, respectively. Our recent study demonstrated that Sh3pxd2b-KO BM-MSCs have a reduced ability to differentiate into osteoblast lineage cells; therefore, we concluded that the Tks4 scaffold protein is important for osteoblast formation, and that it likely plays a role in bone cell homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anomalías Craneofaciales/genética , Cardiopatías Congénitas/genética , Homeostasis , Osteocondrodisplasias/congénito , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Médula Ósea/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/metabolismo , Hueso Esponjoso/patología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Fémur/diagnóstico por imagen , Fémur/metabolismo , Fémur/patología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Osteogénesis , Adulto Joven
10.
J Biol Chem ; 294(12): 4608-4620, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30659095

RESUMEN

Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.


Asunto(s)
Tirosina/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Humanos , Ligandos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Dispersión del Ángulo Pequeño
11.
Biochemistry ; 57(28): 4186-4196, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29928795

RESUMEN

The nonreceptor tyrosine kinase Src is a central component of the epidermal growth factor (EGF) signaling pathway. Our group recently showed that the Frank-ter Haar syndrome protein Tks4 (tyrosine kinase substrate with four Src homology 3 domains) is also involved in EGF signaling. Here we demonstrate that Tks4 and Src bind directly to each other and elucidate the details of the molecular mechanism of this complex formation. Results of GST pull-down and fluorescence polarization assays show that both a proline-rich SH3 binding motif (PSRPLPDAP, residues 466-474) and an adjacent phosphotyrosine-containing SH2 binding motif (pYEEI, residues 508-511) in Tks4 are responsible for Src binding. These motifs interact with the SH3 and SH2 domains of Src, respectively, leading to a synergistic enhancement of binding strength and a highly stable, "bidentate"-type of interaction. In agreement with these results, we found that the association of Src with Tks4 is permanent and the complex lasts at least 3 h in living cells. We conclude that the interaction of Tks4 with Src may result in the long term stabilization of the kinase in its active conformation, leading to prolonged Src activity following EGF stimulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Dominios Homologos src , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Familia-src Quinasas/química
12.
Structure ; 25(8): 1195-1207.e5, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28669632

RESUMEN

Annexin A2 (ANXA2) has a versatile role in membrane-associated functions including membrane aggregation, endo- and exocytosis, and it is regulated by post-translational modifications and protein-protein interactions through the unstructured N-terminal domain (NTD). Our sequence analysis revealed a short motif responsible for clamping the NTD to the C-terminal core domain (CTD). Structural studies indicated that the flexibility of the NTD and CTD are interrelated and oppositely regulated by Tyr24 phosphorylation and Ser26Glu phosphomimicking mutation. The crystal structure of the ANXA2-S100A4 complex showed that asymmetric binding of S100A4 induces dislocation of the NTD from the CTD and, similar to the Ser26Glu mutation, unmasks the concave side of ANXA2. In contrast, pTyr24 anchors the NTD to the CTD and hampers the membrane-bridging function. This inhibition can be restored by S100A4 and S100A10 binding. Based on our results we provide a structural model for regulation of ANXA2-mediated membrane aggregation by NTD phosphorylation and S100 binding.


Asunto(s)
Proteína de Unión al Calcio S100A4/química , Anexina A2/química , Anexina A2/genética , Anexina A2/metabolismo , Sitios de Unión , Humanos , Mutación , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteína de Unión al Calcio S100A4/metabolismo
13.
Cell Signal ; 32: 66-75, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28104445

RESUMEN

Src homology 3 or SH3 domains constitute one of the most common protein domains in signal transduction, generally characterized by their binding to proline-rich sequences on interacting signaling proteins. Caskin1, a scaffold protein regulating cortical actin filaments, enriched in neural synapses in mammals, has an atypical SH3 domain. Key aromatic residues necessary for ligand binding that are present in canonical SH3 domains are missing from Caskin1 SH3. In concordance, proline-rich interacting partner could not be identified yet. Based on previous reports that several SH3 domains are able to bind phospholipids, we sought for lipid interacting partners of the SH3 domain of human Caskin1. We investigated the signaling-born lysophospholipid mediators, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) as potential binding partners for this SH3 domain. These lipid mediators as first messengers activate G protein-coupled receptors. They also exert several G protein-coupled receptor-independent functions but their intracellular target proteins are mostly unknown. Here we provide evidence that the SH3 domain of human Caskin1 selectively binds to LPA in vitro. The binding strength and stoichiometry depend on the association-state of the lipid, with nanomolar affinity to LPA-containing membraneous surfaces. The amino acids involved in the interaction are located in a ß-strand structure and are distinct from those corresponding to the canonical proline-rich ligand-binding groove in the SH3 domain of Src kinase. Our results suggest that the SH3 domain of human Caskin1 is a lipid-binding domain rather than a proline-rich motif interacting domain.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Espacio Intracelular/metabolismo , Lípidos/química , Lisofosfolípidos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Dominios Homologos src , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Prolina/metabolismo , Unión Proteica , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...