Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stand Genomic Sci ; 9: 20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25780509

RESUMEN

BACKGROUND: More than 80% of the microbial genomes in GenBank are of 'draft' quality (12,553 draft vs. 2,679 finished, as of October, 2013). We have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. RESULTS: Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes had quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. CONCLUSIONS: The score can be used to set thresholds for screening data when analyzing "all published genomes" and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an 'A' (codons ending with a 'U') are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.

2.
Database (Oxford) ; 2010: baq012, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20627862

RESUMEN

Shewanellae are facultative gamma-proteobacteria whose remarkable respiratory versatility has resulted in interest in their utility for bioremediation of heavy metals and radionuclides and for energy generation in microbial fuel cells. Extensive experimental efforts over the last several years and the availability of 21 sequenced Shewanella genomes made it possible to collect and integrate a wealth of information on the genus into one public resource providing new avenues for making biological discoveries and for developing a system level understanding of the cellular processes. The Shewanella knowledgebase was established in 2005 to provide a framework for integrated genome-based studies on Shewanella ecophysiology. The present version of the knowledgebase provides access to a diverse set of experimental and genomic data along with tools for curation of genome annotations and visualization and integration of genomic data with experimental data. As a demonstration of the utility of this resource, we examined a single microarray data set from Shewanella oneidensis MR-1 for new insights into regulatory processes. The integrated analysis of the data predicted a new type of bacterial transcriptional regulation involving co-transcription of the intergenic region with the downstream gene and suggested a biological role for co-transcription that likely prevents the binding of a regulator of the upstream gene to the regulator binding site located in the intergenic region. Database URL: http://shewanella-knowledgebase.org:8080/Shewanella/ or http://spruce.ornl.gov:8080/Shewanella/


Asunto(s)
ADN Bacteriano/genética , ADN Intergénico/genética , Bases del Conocimiento , Shewanella/genética , Secuencia de Bases , Bases de Datos Genéticas , Ecosistema , Silenciador del Gen , Genoma Bacteriano , Datos de Secuencia Molecular , Alineación de Secuencia , Shewanella/fisiología , Transcripción Genética
3.
Funct Integr Genomics ; 10(1): 97-110, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19802638

RESUMEN

Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species' cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na(+)/H(+) antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Frío , Familia de Multigenes/genética , Shewanella/genética , Sintenía/genética , Proteínas Bacterianas/química , Genes Bacterianos/genética , Sitios Genéticos/genética , Fenotipo , Estructura Terciaria de Proteína , Tolerancia a la Sal/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Bioinformation ; 4(4): 169-72, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20198195

RESUMEN

UNLABELLED: Shewanella oneidensis MR-1 is an important model organism for environmental research as it has an exceptional metabolic and respiratory versatility regulated by a complex regulatory network. We have developed a database to collect experimental and computational data relating to regulation of gene and protein expression, and, a visualization environment that enables integration of these data types. The regulatory information in the database includes predictions of DNA regulator binding sites, sigma factor binding sites, transcription units, operons, promoters, and RNA regulators including non-coding RNAs, riboswitches, and different types of terminators. AVAILABILITY: http://shewanella-knowledgebase.org:8080/Shewanella/gbrowserLanding.jsp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA