Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(4-1): 044303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755874

RESUMEN

In the face of the stupefying complexity of the human brain, network analysis is a most useful tool that allows one to greatly simplify the problem, typically by approximating the billions of neurons making up the brain by means of a coarse-grained picture with a practicable number of nodes. But even such relatively small and coarse networks, such as the human connectome with its 100-1000 nodes, may present challenges for some computationally demanding analyses that are incapable of handling networks with more than a handful of nodes. With such applications in mind, we set out to study the extent to which dynamical behavior and critical phenomena in the brain may be preserved following a severe coarse-graining procedure. Thus we proceeded to further coarse grain the human connectome by taking a modularity-based approach, the goal being to produce a network of a relatively small number of modules. After finding that the qualitative dynamical behavior of the coarse-grained networks reflected that of the original networks, albeit to a less pronounced extent, we then formulated a hypothesis based on the coarse-grained networks in the context of criticality in the Wilson-Cowan and Ising models, and we verified the hypothesis, which connected a transition value of the former with the critical temperature of the latter, using the original networks. This preservation of dynamical and critical behavior following a severe coarse-graining procedure, in principle, allows for the drawing of similar qualitative conclusions by analyzing much smaller networks, which opens the door for studying the human connectome in contexts typically regarded as computationally intractable, such as Integrated Information Theory and quantum models of the human brain.


Asunto(s)
Encéfalo , Conectoma , Modelos Neurológicos , Humanos , Encéfalo/fisiología , Red Nerviosa/fisiología
2.
Phys Rev E ; 107(5-1): 054308, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37328981

RESUMEN

We utilize a model of Wilson-Cowan oscillators to investigate structure-function relationships in the human brain by means of simulations of the spontaneous dynamics of brain networks generated through human connectome data. This allows us to establish relationships between the global excitability of such networks and global structural network quantities for connectomes of two different sizes for a number of individual subjects. We compare the qualitative behavior of such correlations between biological networks and shuffled networks, the latter generated by shuffling the pairwise connectivities of the former while preserving their distribution. Our results point towards a remarkable propensity of the brain to achieve a trade-off between low network wiring cost and strong functionality, and highlight the unique capacity of brain network topologies to exhibit a strong transition from an inactive state to a globally excited one.


Asunto(s)
Conectoma , Red Nerviosa , Humanos , Encéfalo , Conectoma/métodos
3.
PLoS One ; 18(4): e0272688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37023059

RESUMEN

The underlying anatomical structure is fundamental to the study of brain networks, but the role of brainstem from a structural perspective is not very well understood. We conduct a computational and graph-theoretical study of the human structural connectome incorporating a variety of subcortical structures including the brainstem. Our computational scheme involves the use of Python DIPY and Nibabel libraries to develop structural connectomes using 100 healthy adult subjects. We then compute degree, eigenvector, and betweenness centralities to identify several highly connected structures and find that the brainstem ranks highest across all examined metrics, a result that holds even when the connectivity matrix is normalized by volume. We also investigated some global topological features in the connectomes, such as the balance of integration and segregation, and found that the domination of the brainstem generally causes networks to become less integrated and segregated. Our results highlight the importance of including the brainstem in structural network analyses.


Asunto(s)
Conectoma , Adulto , Humanos , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Tronco Encefálico/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Voluntarios Sanos , Imagen por Resonancia Magnética
4.
Proc Natl Acad Sci U S A ; 117(44): 27231-27237, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087572

RESUMEN

We present a comprehensive theoretical study of the phase diagram of a system of many Bose particles interacting with a two-body central potential of the so-called Lennard-Jones form. First-principles path-integral computations are carried out, providing essentially exact numerical results on the thermodynamic properties. The theoretical model used here provides a realistic and remarkably general framework for describing simple Bose systems ranging from crystals to normal fluids to superfluids and gases. The interplay between particle interactions on the one hand and quantum indistinguishability and delocalization on the other hand is characterized by a single quantumness parameter, which can be tuned to engineer and explore different regimes. Taking advantage of the rare combination of the versatility of the many-body Hamiltonian and the possibility for exact computations, we systematically investigate the phases of the systems as a function of pressure (P) and temperature (T), as well as the quantumness parameter. We show how the topology of the phase diagram evolves from the known case of 4He, as the system is made more (and less) quantum, and compare our predictions with available results from mean-field theory. Possible realization and observation of the phases and physical regimes predicted here are discussed in various experimental systems, including hypothetical muonic matter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...