Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058036

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with a ~50% response rate to immune checkpoint blockade (ICB) therapy. To identify predictive biomarkers, we integrated bulk and single-cell RNA-seq with spatial transcriptomics from a cohort of 186 samples from 116 patients, including bulk RNA-seq from 14 matched pairs pre- and post-ICB. In non-responders, tumors show evidence of increased tumor proliferation, neuronal stem cell markers, and IL-1. Responders have increased type I/II interferons and pre-existing tissue resident (Trm) CD8 or Vd1 gd T cells that functionally converge with overlapping antigen-specific transcriptional programs and clonal expansion of public TCRs. Spatial transcriptomics demonstrated co-localization of T cells with B and dendritic cells, which supply chemokines and co-stimulation. Lastly, ICB significantly increased clonal expansion or recruitment of Trm and Vd1 cells in tumors specifically in responders, underscoring their therapeutic importance. These data identify potential clinically actionable biomarkers and therapeutic targets for MCC.

2.
Sci Immunol ; 9(96): eadj8526, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905326

RESUMEN

Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Memoria Inmunológica , Inflamación , Células T de Memoria , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología , Células T de Memoria/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Femenino , Masculino , Adulto , Vacunas contra la COVID-19/inmunología
3.
Nat Immunol ; 25(7): 1270-1282, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38877178

RESUMEN

The relative and synergistic contributions of genetics and environment to interindividual immune response variation remain unclear, despite implications in evolutionary biology and medicine. Here we quantify interactive effects of genotype and environment on immune traits by investigating C57BL/6, 129S1 and PWK/PhJ inbred mice, rewilded in an outdoor enclosure and infected with the parasite Trichuris muris. Whereas cellular composition was shaped by interactions between genotype and environment, cytokine response heterogeneity including IFNγ concentrations was primarily driven by genotype with consequence on worm burden. In addition, we show that other traits, such as expression of CD44, were explained mostly by genetics on T cells, whereas expression of CD44 on B cells was explained more by environment across all strains. Notably, genetic differences under laboratory conditions were decreased following rewilding. These results indicate that nonheritable influences interact with genetic factors to shape immune variation and parasite burden.


Asunto(s)
Interacción Gen-Ambiente , Ratones Endogámicos C57BL , Tricuriasis , Trichuris , Animales , Trichuris/inmunología , Tricuriasis/inmunología , Tricuriasis/parasitología , Ratones , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Linfocitos B/inmunología , Genotipo , Interferón gamma/metabolismo , Linfocitos T/inmunología , Femenino , Masculino
4.
J Invest Dermatol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762064

RESUMEN

Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.

5.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536921

RESUMEN

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glutamina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Mutación
6.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38170178

RESUMEN

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Asunto(s)
Linfoma Cutáneo de Células T , Síndrome de Sézary , Neoplasias Cutáneas , Infecciones Estafilocócicas , Humanos , Síndrome de Sézary/tratamiento farmacológico , Síndrome de Sézary/patología , Staphylococcus aureus , FN-kappa B , Linfocitos T , Enterotoxinas/farmacología , Linfoma Cutáneo de Células T/patología , Receptores de Antígenos de Linfocitos T , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Resistencia a Medicamentos
7.
J Invest Dermatol ; 144(4): 755-763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38149950

RESUMEN

Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.


Asunto(s)
Linfoma Cutáneo de Células T , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/patología , Linfoma Cutáneo de Células T/patología , Piel/patología
8.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38106171

RESUMEN

Plasma cells (PCs) are essential for humoral immunity, as they are responsible for the production of antibodies and contribute to immunological memory. Despite their importance, differentiating between long-lived and short-lived PCs in vivo remains a challenge due to a lack of specific markers to distinguish these populations. Addressing this gap, our study introduces a novel J-chain CreERT2 GFP allele (IgJCreERT2) for precise genetic studies of PCs. This model takes advantage of PC-restricted expression of the J-chain gene, enabling temporal and cell-specific tracking of PCs utilizing a tamoxifen-inducible Cre recombinase. Our in vitro and in vivo validation studies of the inducible Cre allele confirmed the fidelity and utility of this model and demonstrated the model's ability to trace the long-lived PC population in vivo following immunization. The IgJCreERT2 model allowed for detailed analysis of surface marker expression on PCs, revealing insights into PC heterogeneity and characteristics. Our findings not only validate the IgJCreERT2 mouse as a reliable tool for studying PCs but also facilitate the investigation of PC dynamics and longevity, particularly in the context of humoral immunity and vaccine responses. This model represents a significant advancement for the in-depth study of PCs in health and disease, offering a new avenue for the exploration of PC biology and immunological memory.

9.
iScience ; 26(12): 108572, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38213787

RESUMEN

SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αß T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA