RESUMEN
T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.
Asunto(s)
Linfocitos B/inmunología , Centro Germinal/citología , Nucleósidos/metabolismo , ARN Mensajero/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Antígenos/metabolismo , Lípidos/química , Macaca mulatta , Nanopartículas/química , Subunidades de Proteína/metabolismo , Factores de Tiempo , VacunaciónRESUMEN
BACKGROUND: The efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity. METHODS: Here, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses to sets of 410 overlapping peptides (OLP) spanning the entire HIV-1 proteome. For each OLP, a "protective ratio" (PR) was calculated as the ratio of median viral loads (VL) between OLP non-responders and responders. RESULTS: For both clades, there was a negative relationship between the PR and the entropy of the OLP sequence. There was also a significant additive effect of multiple responses to beneficial OLP. Responses to beneficial OLP were of significantly higher functional avidity than responses to non-beneficial OLP. They also had superior in-vitro antiviral activities and, importantly, were at least as predictive of individuals' viral loads than their HLA class I genotypes. CONCLUSIONS: The data thus identify immunogen sequence candidates for HIV and provide an approach for T cell immunogen design applicable to other viral infections.
Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Alelos , Secuencia de Aminoácidos , Estudios de Cohortes , Secuencia Conservada/genética , Heterogeneidad Genética , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Análisis Multivariante , Péptidos/inmunología , Perú , Especificidad de la Especie , Carga Viral/inmunología , Replicación Viral/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunologíaRESUMEN
Conflicting data on the role of total virus- and protein-specific cytotoxic-T-lymphocyte (CTL) responses in the control of human immunodeficiency virus (HIV) disease progression exist. We present data generated from a Peruvian cohort of untreated, clade B-infected subjects, demonstrating that the proportion of Gag-specific, and in particular p24-reactive, CTL responses among the total virus-specific CTL activity is associated with individuals' CD4 counts and viral loads. Analyses in a second cohort in the United States confirm these findings and point towards a dominant role of Gag-specific immunity in effective control of HIV infection, providing important guidance for HIV vaccine development.