Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiother Oncol ; 197: 110365, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830538

RESUMEN

Compared to conventional radiotherapy using X-rays, proton therapy, in principle, allows better conformity of the dose distribution to target volumes, at the cost of greater sensitivity to physical, anatomical, and positioning uncertainties. Robust planning, both in terms of plan optimization and evaluation, has gained high visibility in publications on the subject and is part of clinical practice in many centers. However, there is currently no consensus on the methods and parameters to be used for robust optimization or robustness evaluation. We propose to overcome this deficiency by following the modified Delphi consensus method. This method first requires a systematic review of the literature. We performed this review using the PubMed and Web Of Science databases, via two different experts. Potential conflicts were resolved by a third expert. We then explored the different methods before focusing on clinical studies that evaluate robustness on a significant number of patients. Many robustness assessment methods are proposed in the literature. Some are more successful than others and their implementation varies between centers. Moreover, they are not all statistically or mathematically equivalent. The most sophisticated and rigorous methods have seen more limited application due to the difficulty of their implementation and their lack of widespread availability.

3.
Phys Med Biol ; 63(4): 045026, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29182154

RESUMEN

A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r ⩾ 0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/patología , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/patología , Reconocimiento de Normas Patrones Automatizadas/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Incertidumbre
4.
Phys Med Biol ; 61(23): N642-N649, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819251

RESUMEN

In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution measurements with sub-millimeter accuracy.


Asunto(s)
Algoritmos , Imagenología Tridimensional/métodos , Aceleradores de Partículas/instrumentación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/instrumentación
5.
Phys Med Biol ; 61(10): 3843-56, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27100169

RESUMEN

The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.


Asunto(s)
Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Humanos , Radioterapia de Intensidad Modulada/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Med Phys ; 40(2): 021710, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23387733

RESUMEN

PURPOSE: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. METHODS: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%∕3mm and classification of PASS (GI ≤ 0.4), EVAL (0.4 < GI > 0.6), and FAIL (GI ≥ 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. RESULTS: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g∕cm(3)). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 ± 0.08. Linac stability was high with an average GI of 0.28 ± 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. CONCLUSIONS: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.


Asunto(s)
Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Método de Montecarlo , Control de Calidad , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Factores de Tiempo
7.
Phys Med Biol ; 56(15): 5029-43, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21772084

RESUMEN

The COMPASS system (IBA Dosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct reconstruction of the fluence with a high resolution is not possible because of the limited resolution of the matrix used, but it comes with a blurring of the dose which creates inaccuracies in the dose reconstruction. This paper describes the method and verifies its capability to detect errors in the positioning of a MLC with 10 mm leaf width in a phantom geometry. Dose reconstruction was performed for MLC position errors of various sizes at various locations for both rectangular and intensity-modulated radiotherapy (IMRT) fields and compared to a reference dose. It was found that the accuracy with which an error in MLC position is detected depends on the location of the error relative to the detectors in the matrix. The reconstructed dose in an individual rectangular field for leaf positioning errors up to 5 mm was correct within 5% in 50% of the locations. At the remaining locations, the reconstruction of leaf position errors larger than 3 mm can show inaccuracies, even though these errors were detectable in the dose reconstruction. Errors larger than 9 mm created inaccuracies up to 17% in a small area close to the penumbra. The QA capability of the system was tested through gamma evaluation. Our results indicate that the mean gamma provided by the system is slightly increased and that the number of points above gamma 1 ensures error detection for QA purposes. Overall, the correction kernel method used by the COMPASS system is adequate to perform QA of IMRT treatment plans with a regular MLC, despite local inaccuracies in the dose reconstruction.


Asunto(s)
Imagenología Tridimensional/métodos , Dosis de Radiación , Radiometría/métodos , Radioterapia de Intensidad Modulada/métodos , Humanos , Control de Calidad , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/normas
8.
Phys Med Biol ; 46(2): 269-86, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11229714

RESUMEN

Advanced electron beam dose calculation models for radiation oncology require as input an initial phase space (IPS) that describes a clinical electron beam. The IPS is a distribution in position, energy and direction of electrons and photons in a plane in front of the patient. A method is presented to derive the IPS of a clinical electron beam from a limited set of measured beam data. The electron beam is modelled by a sum of four beam components: a main diverging beam, applicator edge scatter, applicator transmission and a second diverging beam. The two diverging beam components are described by weighted sums of monoenergetic diverging electron and photon beams. The weight factors of these monoenergetic beams are determined by the method of simulated annealing such that a best fit is obtained with depth-dose curves measured for several field sizes at two source-surface distances. The resulting IPSs are applied by the phase-space evolution electron beam dose calculation model to calculate absolute 3D dose distributions. The accuracy of the calculated results is in general within 1.5% or 1.5 mm; worst cases show differences of up to 3% or 3 mm. The method presented here to describe clinical electron beams yields accurate results, requires only a limited set of measurements and might be considered as an alternative to the use of Monte Carlo methods to generate full initial phase spaces.


Asunto(s)
Electrones/uso terapéutico , Modelos Teóricos , Neoplasias/radioterapia , Fenómenos Biofísicos , Biofisica , Humanos , Método de Montecarlo , Aceleradores de Partículas , Fotones/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Radioterapia de Alta Energía/estadística & datos numéricos , Dispersión de Radiación
9.
Phys Med Biol ; 45(10): 2931-45, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11049181

RESUMEN

The phase space evolution (PSE) model is a dose calculation model for electron beams in radiation oncology developed with the aim of a higher accuracy than the commonly used pencil beam (PB) models and with shorter calculation times than needed for Monte Carlo (MC) calculations. In this paper the accuracy of the PSE model has been investigated for 25 MeV electron beams of a MM50 racetrack microtron (Scanditronix Medical AB, Sweden) and compared with the results of a PB model. Measurements have been performed for tests like non-standard SSD, irregularly shaped fields, oblique incidence and in phantoms with heterogeneities of air, bone and lung. MC calculations have been performed as well, to reveal possible errors in the measurements and/or possible inaccuracies in the interaction data used for the bone and lung substitute materials. Results show a good agreement between PSE calculated dose distributions and measurements. For all points the differences--in absolute dose--were generally well within 3% and 3 mm. However, the PSE model was found to be less accurate in large regions of low-density material and errors of up to 6% were found for the lung phantom. Results of the PB model show larger deviations, with differences of up to 6% and 6 mm and of up to 10% for the lung phantom; at shortened SSDs the dose was overestimated by up to 6%. The agreement between MC calculations and measurement was good. For the bone and the lung phantom maximum deviations of 4% and 3% were found, caused by uncertainties about the actual interaction data. In conclusion, using the phase space evolution model, absolute 3D dose distributions of 25 MeV electron beams can be calculated with sufficient accuracy in most cases. The accuracy is significantly better than for a pencil beam model. In regions of lung tissue, a Monte Carlo model yields more accurate results than the current implementation of the PSE model.


Asunto(s)
Electrones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Aire , Algoritmos , Huesos/efectos de la radiación , Humanos , Pulmón/efectos de la radiación , Modelos Teóricos , Método de Montecarlo , Fantasmas de Imagen , Reproducibilidad de los Resultados
10.
Phys Med Biol ; 44(9): 2171-81, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10495112

RESUMEN

For application in radiotherapy, intensity modulated high-energy electron and photon beams were mixed to create dose distributions that feature: (a) a steep dose fall-off at larger depths, similar to pure electron beams, (b) flat beam profiles and sharp and depth-independent beam penumbras, as in photon beams, and (c) a selectable skin dose that is lower than for pure electron beams. To determine the required electron and photon beam fluence profiles, an inverse treatment planning algorithm was used. Mixed beams were realized at a MM50 racetrack microtron (Scanditronix Medical AB, Sweden), and evaluated by the dose distributions measured in a water phantom. The multileaf collimator of the MM50 was used in a static mode to shape overlapping electron beam segments, and the dynamic multileaf collimation mode was used to realize the intensity modulated photon beam profiles. Examples of mixed beams were generated at electron energies of up to 40 MeV. The intensity modulated electron beam component consists of two overlapping concentric fields with optimized field sizes, yielding broad, fairly depth-independent overall beam penumbras. The matched intensity modulated photon beam component has high fluence peaks at the field edges to sharpen this penumbra. The combination of the electron and the photon beams yields dose distributions with the characteristics (a)-(c) mentioned above.


Asunto(s)
Electrones , Modelos Biológicos , Fotones , Radioterapia/métodos , Humanos , Neoplasias/radioterapia , Fantasmas de Imagen , Radiometría , Radioterapia/instrumentación , Dosificación Radioterapéutica
11.
Radiother Oncol ; 48(2): 213-20, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9783895

RESUMEN

BACKGROUND AND PURPOSE: High energy (20-50 MeV) electron beams, available from the MM50 Racetrack Microtron, can be used for the treatment of deep-seated tumors. A disadvantage is the increasing penumbra width as a function of depth. By the addition of a narrow (typically 1 cm wide) photon beam near the field edge, the 50-90% penumbra width of the electron beam is reduced, yielding a significantly increased effective field size. MATERIALS AND METHODS: For rectangular electron beams in a water phantom (energies 25 and 40 MeV, field sizes 5 x 5-15 x 15 cm2) a computer program was used to optimize the photon beam parameters (position, weight and width) to obtain a combined beam with the sharpest penumbra at the optimization depth and a beam flatness within certain constraints. The study furthermore included penumbra sharpening of an irregular multileaf collimator-shaped field. RESULTS AND CONCLUSION: At optimization depths near R90, photon beam addition reduces the penumbra width by 40-50% (from 15-20 mm to 8-10 mm). Beam flatness at the optimization depth is within +/-5% and hot-spots are < or =120% for all depths. By the addition of narrow photon beams around the rectangular or irregular field, the electron field width can be reduced by 1-3 cm, while the effective field size is maintained.


Asunto(s)
Electrones/uso terapéutico , Fotones/uso terapéutico , Radioterapia Conformacional/métodos , Radioterapia de Alta Energía/métodos , Tecnología Radiológica/métodos , Humanos , Fantasmas de Imagen , Radioterapia Asistida por Computador
12.
Phys Med Biol ; 42(7): 1441-9, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9253051

RESUMEN

The phase space evolution model of Huizenga and Storchi, Morawska-Kaczynska and Huizenga and Janssen et al has been modified to (i) allow application on currently available computer equipment with limited memory (128 Megabytes) and (ii) allow 3D dose calculations based on 3D computer tomographic patient data. This is a further development aimed at the use of the phase space evolution model in radiotherapy electrons beam treatment planning. The first modification regards the application of depth evolution of the phase space state combined with an alternative method to transport back-scattered electrons. This depth evolution method requires of the order of 15 times less computer memory than the energy evolution method. Results of previous and new electron transport methods are compared and show that the new electron transport method for back-scattered electrons hardly affects the accuracy of the calculated dose distributions. The second modification regards the simulation of electron transport through tissues with varying densities by applying distributed electron transport through similarly composed media with a limited number of fixed densities. Results of non-distributed and distributed electron transport are compared and show that the distributed electron transport method hardly affects the accuracy of the calculated dose distributions. It is also shown that the results of the new dose distribution calculations are still in good agreement with and require significantly less computation time than results obtained with the EGS4 Monte Carlo method.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Modelos Teóricos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Electrones , Humanos , Dispersión de Radiación , Agua
13.
Phys Med Biol ; 41(10): 2079-90, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8912382

RESUMEN

The phase space evolution (PSE) model is a 3D electron beam dose calculation model for radiation oncology. The PSE model is based upon the transport of electrons with a specific energy and direction over short distances (typically 0.3-1 cm). The result of the transport of these electrons is described by an energy and direction distribution of the electrons, which is stored in a database. The database is used by the PSE model at the time of the actual electron transport simulation. A good agreement between dose distributions calculated by the PSE model and EGS4 Monte Carlo code for mono-energetic, mono-directional electron beams was found. The differences in point dose are within 1-2% of the maximum dose. These differences can be caused by errors in the database used, or by assumptions made in the PSE model. The aim of this paper is to get more insight into the possible errors introduced by the database. Results show that the data in the database are in good agreement with EGS4 calculated data. Also the influence of the database on a PSE calculated dose distribution has been investigated. The differences between a PSE calculated dose distribution and an EGS4 calculated dose distribution can be reduced to < 0.5% if the database is replaced by a database partly created by EGS4. This shows that small errors in the database have a distinct effect on the dose distribution, and that this dose distribution can be calculated accurately by the PSE model if the right database is used.


Asunto(s)
Electrones , Modelos Teóricos , Planificación de la Radioterapia Asistida por Computador , Radioterapia , Simulación por Computador , Bases de Datos Factuales , Humanos , Método de Montecarlo , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...