Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 20(1): 230, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805585

RESUMEN

Stroke is the most common cause of long-term disability and places a high economic burden on the global healthcare system. Functional outcomes from stroke are largely determined by the extent of ischemic injury, however, there is growing recognition that systemic inflammatory responses also contribute to outcomes. Mast cells (MCs) rapidly respond to injury and release histamine (HA), a pro-inflammatory neurotransmitter that enhances inflammation. The gut serves as a major reservoir of HA. We hypothesized that cromolyn, a mast cell stabilizer that prevents the release of inflammatory mediators, would decrease peripheral and central inflammation, reduce MC trafficking to the brain, and improve stroke outcomes. We used the transient middle cerebral artery occlusion (MCAO) model of ischemic stroke in aged (18 mo) male mice to investigate the role of MC in neuroinflammation post-stroke. After MCAO we treated mice with 25 mg/kg body weight of cromolyn (MC stabilizer) by oral gavage. Cromolyn was administered at 3 h, 10 h, 24 h and every 24 h for 3 days post-stroke. Three control groups were used. One group underwent a sham surgery and was treated with cromolyn, one received sham surgery with PBS vehicle and the third underwent MCAO with PBS vehicle. Mice were euthanized at 24 h and 3 days post-stroke. Cromolyn administration significantly reduced MC numbers in the brain at both 24 h and 3 days post-stroke. Infarct volume was not significantly different between groups, however improved functional outcomes were seen at 3 days post-stroke in mice that received cromolyn. Treatment with cromolyn reduced plasma histamine and IL-6 levels in both the 24-h and 3-day cohorts. Gut MCs numbers were significantly reduced after cromolyn treatment at 24 h and 3 days after stroke. To determine if MC trafficking from the gut to the brain occurred after injury, GFP+MCs were adoptively transferred to c-kit-/- MC knock-out animals prior to MCAO. 24 h after stroke, elevated MC recruitment was seen in the ischemic brain. Preventing MC histamine release by cromolyn improved gut barrier integrity and an improvement in stroke-induced dysbiosis was seen with treatment. Our results show that preventing MC histamine release possesses prevents post-stroke neuroinflammation and improves neurological and functional outcomes.


Asunto(s)
Liberación de Histamina , Accidente Cerebrovascular , Humanos , Ratones , Masculino , Animales , Mastocitos , Cromolin Sódico/farmacología , Cromolin Sódico/uso terapéutico , Histamina , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/etiología , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isquemia
2.
Res Sq ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37790313

RESUMEN

Background: Stroke is a major cause of morbidity and mortality, and its incidence increases with age. While acute therapies for stroke are currently limited to intravenous thrombolytics and endovascular thrombectomy, recent studies have implicated an important role for the gut microbiome in post-stroke neuroinflammation. After stroke, several immuno-regulatory pathways, including the aryl hydrocarbon receptor (AHR) pathway, become activated. AHR is a master regulatory pathway that mediates neuroinflammation. Among various cell types, microglia (MG), as the resident immune cells of the brain, play a vital role in regulating post-stroke neuroinflammation and antigen presentation. Activation of AHR is dependent on a dynamic balance between host-derived and microbiota-derived ligands. While previous studies have shown that activation of MG AHR by host-derived ligands, such as kynurenine, is detrimental after stroke, the effects of post-stroke changes in microbiota-derived ligands of AHR, such as indoles, is unknown. Our study builds on the concept that differential activation of MG AHR by host-derived versus microbiome-derived metabolites affects outcomes after ischemic stroke. We examined the link between stroke-induced dysbiosis and loss of essential microbiota-derived AHR ligands. We hypothesize that restoring the balance between host-derived (kynurenine) and microbiota-derived (indoles) ligands of AHR is beneficial after stroke, offering a new potential avenue for therapeutic intervention in post-stroke neuroinflammation. Method: We performed immunohistochemical analysis of brain samples from stroke patients to assess MG AHR expression after stroke. We used metabolomics analysis of plasma samples from stroke and non-stroke control patients with matched comorbidities to determine the levels of indole-based AHR ligands after stroke. We performed transient middle cerebral artery occlusion (MCAO) in aged (18 months) wild-type (WT) and germ-free (GF) mice to investigate the effects of post-stroke treatment with microbiota-derived indoles on outcome. To generate our results, we employed a range of methodologies, including flow cytometry, metabolomics, and 16S microbiome sequencing. Results: We found that MG AHR expression is increased in human brain after stroke and after ex vivo oxygen-glucose deprivation and reperfusion (OGD/R). Microbiota-derived ligands of AHR are decreased in the human plasma at 24 hours after ischemic stroke. Kynurenine and indoles exhibited differential effects on aged WT MG survival after ex vivoOGD/R. We found that specific indole-based ligands of AHR (indole-3-propionic acid and indole-3-aldehyde) were absent in GF mice, thus their production depends on the presence of a functional gut microbiota. Additionally, a time-dependent decrease in the concentration of these indole-based AHR ligands occurred in the brain within the first 24 hours after stroke in aged WT mice. Post-stroke treatment of GF mice with a cocktail of microbiota-derived indole-based ligands of AHR regulated MG-mediated neuroinflammation and molecules involved in antigen presentation (increased CD80, MHC-II, and CD11b). Post-stroke treatment of aged WT mice with microbiota-derived indole-based ligands of AHR reduced both infarct volume and neurological deficits at 24 hours. Conclusion: Our novel findings provide compelling evidence that the restoration of a well-balanced pool of host-derived kynurenine-based and microbiota-derived indole-based ligands of AHR holds considerable therapeutic potential for the treatment of ischemic stroke.

3.
Transl Pediatr ; 12(8): 1552-1571, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37692539

RESUMEN

Background and Objective: Hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability worldwide. Therapeutic hypothermia (TH) represents a significant achievement in the translation of scientific research to clinical application, but it is currently the only neuroprotective treatment for HIE. This review aims to revisit the use of TH for HIE and its longitudinal impact on patient outcomes to readers new to the field of HIE. We discuss how emerging therapies address the broader pathophysiology of injury progression in the neonatal brain days to years after HIE. Methods: We included full articles and book chapters published in English on PubMed with references to "hypoxic ischemic encephalopathy", "birth asphyxia", "therapeutic hypothermia", or "neonatal encephalopathy". We limited our review to outcomes on term infants and to new therapeutics that are in the second phase of clinical trials. Key Content and Findings: Despite the use of TH for HIE, mortality remains high. Analysis of longitudinal studies reveals a high incidence of ongoing disability even with the implementation of TH. New therapeutics addressing the secondary phase and the less understood tertiary phase of brain injury are in clinical trials as adjunctive treatments to TH to support additional neurological repair and regeneration. Conclusions: TH successfully improves outcomes after HIE, and it continues to be optimized. Larger studies are needed to understand its use in mild cases of HIE and if certain factors, such as sex, affect long term outcomes. TH primarily acts in the initial phases of injury, while new pharmaceutical therapies target additional injury pathways into the tertiary phases of injury. This may allow for more effective approaches to treatment and improvement of long-term functional outcomes after HIE.

4.
J Immunol ; 209(2): 288-300, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35732342

RESUMEN

Recent studies have highlighted the deleterious contributions of B cells to post-stroke recovery and cognitive decline. Different B cell subsets have been proposed on the basis of expression levels of transcription factors (e.g., T-bet) as well as specific surface proteins. CD11b (α-chain of integrin) is expressed by several immune cell types and is involved in regulation of cell motility, phagocytosis, and other essential functions of host immunity. Although B cells express CD11b, the CD11bhigh subset of B cells has not been well characterized, especially in immune dysregulation seen with aging and after stroke. Here, we investigate the role of CD11bhigh B cells in immune responses after stroke in young and aged mice. We evaluated the ability of CD11bhigh B cells to influence pro- and anti-inflammatory phenotypes of young and aged microglia (MG). We hypothesized that CD11bhigh B cells accumulate in the brain and contribute to neuroinflammation in aging and after stroke. We found that CD11bhigh B cells are a heterogeneous subpopulation of B cells predominantly present in naive aged mice. Their frequency increases in the brain after stroke in young and aged mice. Importantly, CD11bhigh B cells regulate MG phenotype and increase MG phagocytosis in both ex vivo and in vivo settings, likely by production of regulatory cytokines (e.g., TNF-α). As both APCs and adaptive immune cells with long-term memory function, B cells are uniquely positioned to regulate acute and chronic phases of the post-stroke immune response, and their influence is subset specific.


Asunto(s)
Microglía , Accidente Cerebrovascular , Animales , Linfocitos B/metabolismo , Antígeno CD11b/metabolismo , Recuento de Células , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Accidente Cerebrovascular/metabolismo
5.
J Alzheimers Dis ; 88(1): 191-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35527554

RESUMEN

BACKGROUND: Substantial evidence from recent research suggests an influential and underappreciated force in Alzheimer's disease (AD) pathogenesis: the pathological signals originate from outside the brain. Pathogenic bacteria produce amyloid-like proteins "curli" that form biofilms and show functional similarities to human amyloid-ß (Aß). These proteins may contribute to neurological disease progression via signaling cascade from the gut to the brain. OBJECTIVE: We propose that curli causes neuroendocrine activation from the gut to brain that promotes central Aß pathology. METHODS: PGP9.5 and TLR2 levels in response to curli in the lumen of Tg2576 AD mice were analyzed by immunohistochemical and qRT-PCR analysis. Western blot and human 3D in vitro enteroids culture systems were also used. 16S rRNA gene sequencing was used to investigate bacterial dysbiosis. RESULTS: We found significant increase in bacterial-amyloid curli with elevated TLR2 at the mRNA level in the pre- and symptomatic Tg-AD gut compared to littermate WT controls. This data associates with increased gram-positive bacterial colonization in the ileum of the symptomatic AD mice. We found fundamental evidence for vagus nerve activation in response to bacterial curli. Neuroendocrine marker PGP9.5 was significantly elevated in the gut epithelium of symptomatic AD mice, and this was colocalized with increased TLR2 expression. Enteroids, 3D-human ileal mini-gut monolayer in vitro model system also revealed increase levels of TLR2 upon stimulation with purified bacterial curli fibrils. CONCLUSION: These findings reveal the importance of pathological changes within the gut-vagus-brain signaling in response to luminal bacterial amyloid that might play a vital role in central Aß pathogenesis seen in the AD brain.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/genética , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Ratones , Ratones Transgénicos , ARN Ribosómico 16S , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
6.
Neurobiol Dis ; 168: 105695, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35307514

RESUMEN

Historically, females have been underrepresented in biological research. With increased interest in the gut microbiome and the gut-brain axis, it is important for researchers to pursue studies that consider sex as a biological variable. The composition of the gut microbiome is influenced by environmental factors, disease, diet, and varies with age and by sex. Detrimental changes in the gut microbiome, referred to as dysbiosis, is believed to influence the development and progression of age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and stroke. Many are investigating the changes in microbial populations in order or to better understand the role of the gut immunity and the microbiome in neurodegenerative diseases, many of which the exact etiology remains elusive, and no cures exist.  Others are working to find diagnostic markers for earlier detection, or to therapeutically modulate microbial populations using probiotics. However, while all these diseases present in reproductively senescent females, most studies only use male animals for their experimental design. Reproductively senescent females have been shown to have differences in disease progression, inflammatory responses, and microbiota composition, therefore, for research to be translational to affected populations it is necessary for appropriate models to be used. This review discusses factors that influence the gut microbiome and the gut brain axis in females, and highlights studies that have investigated the role of dysbiosis in age-related neurodegenerative disorders that have included females in their study design.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/complicaciones , Animales , Encéfalo , Disbiosis , Femenino , Microbioma Gastrointestinal/fisiología , Enfermedad de Huntington/complicaciones , Masculino , Enfermedades Neurodegenerativas/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...