Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(10): 105045, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36062075

RESUMEN

Sustainable global immunization campaigns against COVID-19 and other emerging infectious diseases require effective, broadly deployable vaccines. Here, we report a dissolvable microarray patch (MAP) SARS-CoV-2 vaccine that targets the immunoresponsive skin microenvironment, enabling efficacious needle-free immunization. Multicomponent MAPs delivering both SARS-CoV-2 S1 subunit antigen and the TLR3 agonist Poly(I:C) induce robust antibody and cellular immune responses systemically and in the respiratory mucosa. MAP vaccine-induced antibodies bind S1 and the SARS-CoV-2 receptor-binding domain, efficiently neutralize the virus, and persist at high levels for more than a year. The MAP platform reduces systemic toxicity of the delivered adjuvant and maintains vaccine stability without refrigeration. When applied to human skin, MAP vaccines activate skin-derived migratory antigen-presenting cells, supporting the feasibility of human translation. Ultimately, this shelf-stable MAP vaccine improves immunogenicity and safety compared to traditional intramuscular vaccines and offers an attractive alternative for global immunization efforts against a range of infectious pathogens.

2.
ACS Biomater Sci Eng ; 8(7): 2864-2877, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35674145

RESUMEN

Particles synthesized from biodegradable polymers hold great potential as controlled drug delivery systems. Continuous flow platforms based on microfluidics offer attractive advantages over conventional batch-emulsification techniques for the scalable fabrication of drug-loaded particles with controlled physicochemical properties. However, widespread utilization of microfluidic technologies for the manufacturing of drug-loaded particles has been hindered largely by the lack of practical guidelines toward cost-effective development and reliable operation of microfluidic systems. Here, we present a framework for rational design and construction of microfluidic systems using commercially available components for high-throughput production of uniform biodegradable particles encapsulating drugs. We also demonstrate successful implementation of this framework to devise a robust microfluidic system that is capable of producing drug-carrying particles with desired characteristics. The guidelines provided in this study will likely help broaden the applicability of microfluidic technologies for the synthesis of high-quality, drug-loaded biodegradable particles.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microfluídica
3.
J Allergy Clin Immunol ; 150(1): 114-130, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085664

RESUMEN

BACKGROUND: Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE: We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS: In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS: We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS: Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.


Asunto(s)
Dermatitis Alérgica por Contacto , Antagonistas del Receptor de Neuroquinina-1 , Animales , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Haptenos , Ratones , Antagonistas del Receptor de Neuroquinina-1/farmacología , Receptores de Neuroquinina-1 , Sustancia P
4.
J Invest Dermatol ; 141(11): 2549-2557.e1, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688405

RESUMEN

Skin-targeted drug delivery is broadly employed for both local and systemic therapeutics and is an important tool for discovery efforts in cutaneous biology. Recently, emerging technologies support efforts toward skin-targeted biocargo delivery for local and systemic therapeutic benefit. Effective targeting of bioactive molecules, including large (molecular weight > 500 Da) or complex (hydrophilic and charged) molecules, to defined cutaneous microenvironments is intrinsically challenging owing to the protective barrier function of the skin. Dissolvable microneedle arrays (MNAs) have proven to be a promising technology to address the unmet need for controlled, minimally invasive, and reliable delivery of a wide range of biocargos to the skin. In this paper, we describe the unique properties of the skin that make it an attractive target for vaccine delivery, for immune-modulating therapies, and for systemic drug delivery and the structural characteristics of the skin that present obstacles to efficient intracutaneous and transdermal delivery of bioactive molecules. We provide an overview of MNA fabrication and the characteristics and mechanisms of dissolvable MNA cargo delivery to the cutaneous microenvironment. We present a representative example of a clinical application of MNAs and discuss future directions for MNA development and applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Piel/metabolismo , Vacunas/administración & dosificación , Administración Cutánea , Microinyecciones , Proyectos de Investigación
5.
Eur J Immunol ; 51(7): 1774-1784, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772778

RESUMEN

Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Vacunación
6.
Adv Drug Deliv Rev ; 171: 164-186, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539853

RESUMEN

The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Desarrollo de Medicamentos/tendencias , SARS-CoV-2/inmunología , Piel/inmunología , Parche Transdérmico/tendencias , Administración Cutánea , COVID-19/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/metabolismo , Desarrollo de Medicamentos/métodos , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo
7.
Expert Opin Drug Deliv ; 18(2): 151-167, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32924651

RESUMEN

INTRODUCTION: Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED: This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION: In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Sistemas de Liberación de Medicamentos/métodos , Piel/inmunología , Vacunación/métodos , Vacunas/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Administración Cutánea , Animales , Antígenos/administración & dosificación , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Microambiente Celular/inmunología , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , SARS-CoV-2 , Piel/metabolismo
9.
EBioMedicine ; 55: 102743, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32249203

RESUMEN

BACKGROUND: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed. The coronavirus spike (S) protein, a characteristic structural component of the viral envelope, is considered a key target for vaccines for the prevention of coronavirus infection. METHODS: We first generated codon optimized MERS-S1 subunit vaccines fused with a foldon trimerization domain to mimic the native viral structure. In variant constructs, we engineered immune stimulants (RS09 or flagellin, as TLR4 or TLR5 agonists, respectively) into this trimeric design. We comprehensively tested the pre-clinical immunogenicity of MERS-CoV vaccines in mice when delivered subcutaneously by traditional needle injection, or intracutaneously by dissolving microneedle arrays (MNAs) by evaluating virus specific IgG antibodies in the serum of vaccinated mice by ELISA and using virus neutralization assays. Driven by the urgent need for COVID-19 vaccines, we utilized this strategy to rapidly develop MNA SARS-CoV-2 subunit vaccines and tested their pre-clinical immunogenicity in vivo by exploiting our substantial experience with MNA MERS-CoV vaccines. FINDINGS: Here we describe the development of MNA delivered MERS-CoV vaccines and their pre-clinical immunogenicity. Specifically, MNA delivered MERS-S1 subunit vaccines elicited strong and long-lasting antigen-specific antibody responses. Building on our ongoing efforts to develop MERS-CoV vaccines, promising immunogenicity of MNA-delivered MERS-CoV vaccines, and our experience with MNA fabrication and delivery, including clinical trials, we rapidly designed and produced clinically-translatable MNA SARS-CoV-2 subunit vaccines within 4 weeks of the identification of the SARS-CoV-2 S1 sequence. Most importantly, these MNA delivered SARS-CoV-2 S1 subunit vaccines elicited potent antigen-specific antibody responses that were evident beginning 2 weeks after immunization. INTERPRETATION: MNA delivery of coronaviruses-S1 subunit vaccines is a promising immunization strategy against coronavirus infection. Progressive scientific and technological efforts enable quicker responses to emerging pandemics. Our ongoing efforts to develop MNA-MERS-S1 subunit vaccines enabled us to rapidly design and produce MNA SARS-CoV-2 subunit vaccines capable of inducing potent virus-specific antibody responses. Collectively, our results support the clinical development of MNA delivered recombinant protein subunit vaccines against SARS, MERS, COVID-19, and other emerging infectious diseases.


Asunto(s)
Betacoronavirus/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Inmunización Secundaria , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2 , Organismos Libres de Patógenos Específicos , Factores de Tiempo , Vacunas de Subunidad/administración & dosificación , Vacunas Virales/inmunología
10.
Pharm Res ; 37(3): 33, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942659

RESUMEN

PURPOSE: Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo. However, to satisfy regulatory requirements and be utilized in clinical applications, cytotoxicity of the base polymers should also be thoroughly characterized. This study systematically investigated the cytotoxicity of several important carbohydrate-based base polymers used for production of MNAs, including carboxymethyl cellulose (CMC), maltodextrin (MD), trehalose (Treh), glucose (Gluc), and hyaluronic acid (HA). METHODS: Each material was evaluated using in vitro cell-culture methods on relevant mouse and human cells, including MPEK-BL6 mouse keratinocytes, NIH-3T3 mouse fibroblasts, HaCaT human keratinocytes, and NHDF human fibroblasts. A common laboratory cell line, human embryonic kidney cells HEK-293, was also used to allow comparisons to various cytotoxicity studies in the literature. Dissolvable MNA materials were evaluated at concentrations ranging from 3 mg/mL to 80 mg/mL. RESULTS: Qualitative and quantitative analyses of cytotoxicity were performed using optical microscopy, confocal fluorescence microscopy, and flow cytometry-based assays for cell morphology, viability, necrosis and apoptosis. Results from different methods consistently demonstrated negligible in vitro cytotoxicity of carboxymethyl cellulose, maltodextrin, trehalose and hyaluronic acid. Glucose was observed to be toxic to cells at concentrations higher than 50 mg/mL. CONCLUSIONS: It is concluded that CMC, MD, Treh, HA, and glucose (at low concentrations) do not pose challenges in terms of cytotoxicity, and thus, are good candidates as MNA materials for creating clinically-relevant and well-tolerated biodissolvable MNAs.


Asunto(s)
Carbohidratos/química , Carbohidratos/toxicidad , Polímeros/química , Animales , Apoptosis/efectos de los fármacos , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/toxicidad , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Glucosa/química , Glucosa/toxicidad , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/toxicidad , Ratones , Microinyecciones , Agujas , Preparaciones Farmacéuticas/química , Polisacáridos/química , Polisacáridos/toxicidad , Solubilidad , Trehalosa/química , Trehalosa/toxicidad
11.
J Invest Dermatol ; 140(2): 278-281, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31980061

RESUMEN

Systemically delivered targeted biologics have revolutionized the treatment of moderate-to-severe psoriasis. For milder forms of psoriasis, topical therapies, primarily corticosteroids, remain the mainstay of treatment to reduce the risks and off-target side effects associated with systemic therapies. Most newly developed biologics, including monoclonal antibodies, are structurally complex and are unable to penetrate the skin barrier. Recently developed liposomal spherical nucleic acids overcome this barrier and enable topical delivery of antisense oligonucleotides capable of specifically targeting inflammatory pathways underlying psoriasis pathogenesis.


Asunto(s)
Ácidos Nucleicos , Psoriasis , Administración Cutánea , Humanos , Liposomas , Receptores de Interleucina-17
12.
J Control Release ; 317: 336-346, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31756393

RESUMEN

The skin is an attractive tissue target for vaccination, as it is readily accessible and contains a dense population of antigen-presenting and immune-accessory cells. Microneedle arrays (MNAs) are emerging as an effective tool for in situ engineering of the cutaneous microenvironment to enable diverse immunization strategies. Here, we present novel dissolving undercut MNAs and demonstrate their application for effective multicomponent cutaneous vaccination. The MNAs are composed of micron-scale needles featuring pyramidal heads supported by undercut stem regions with filleted bases to ensure successful skin penetration and retention during application. Prior efforts to fabricate dissolving undercut microstructures were limited and required complex and lengthy processing and assembly steps. In the current study, we strategically combine three-dimensional (3D) laser lithography, an emerging micro-additive manufacturing method with unique geometric capabilities and nanoscale resolution, and micromolding with favorable materials. This approach enables reproducible production of dissolving MNAs with undercut microneedles that can be tip-loaded with multiple biocargos, such as antigen (ovalbumin) and adjuvant (Poly(I:C)). The resulting MNAs fulfill the geometric (sharp tips and smooth edges) and mechanical-strength requirements for failure-free penetration of human and murine skin to simultaneously deliver multicomponent (antigen plus adjuvant) vaccines to the same cutaneous microenvironment. Cutaneous vaccination of mice using these MNAs induces more potent antigen-specific cellular and humoral immune responses than those elicited by traditional intramuscular injection. Together, the unique geometric features of these undercut MNAs and the associated manufacturing strategy, which is compatible with diverse drugs and biologics, could enable a broad range of non-cutaneous and cutaneous drug delivery applications, including multicomponent vaccination.


Asunto(s)
Vacunación , Vacunas , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Ratones , Microinyecciones , Agujas , Piel
13.
Biomaterials ; 128: 109-120, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28325683

RESUMEN

Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.


Asunto(s)
Materiales Biomiméticos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Materiales Biomiméticos/farmacología , Células Cultivadas , Dimetilpolisiloxanos/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Recién Nacido , Polimetil Metacrilato/química
14.
Biomed Microdevices ; 18(6): 97, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27778225

RESUMEN

Stable chronic functionality of intracortical probes is of utmost importance toward realizing clinical application of brain-machine interfaces. Sustained immune response from the brain tissue to the neural probes is one of the major challenges that hinder stable chronic functionality. There is a growing body of evidence in the literature that highly compliant neural probes with sub-cellular dimensions may significantly reduce the foreign-body response, thereby enhancing long term stability of intracortical recordings. Since the prevailing commercial probes are considerably larger than neurons and of high stiffness, new approaches are needed for developing miniature probes with high compliance. In this paper, we present design, fabrication, and in vitro evaluation of ultra-miniature (2.7 µm x 10 µm cross section), ultra-compliant (1.4 × 10-2 µN/µm in the axial direction, and 2.6 × 10-5 µN/µm and 1.8 × 10-6 µN/µm in the lateral directions) neural probes and associated probe-encasing biodissolvable delivery needles toward addressing the aforementioned challenges. The high compliance of the probes is obtained by micron-scale cross-section and meandered shape of the parylene-C insulated platinum wiring. Finite-element analysis is performed to compare the strains within the tissue during micromotion when using the ultra-compliant meandered probes with that when using stiff silicon probes. The standard batch microfabrication techniques are used for creating the probes. A dissolvable delivery needle that encases the probe facilitates failure-free insertion and precise placement of the ultra-compliant probes. Upon completion of implantation, the needle gradually dissolves, leaving behind the ultra-compliant neural probe. A spin-casting based micromolding approach is used for the fabrication of the needle. To demonstrate the versatility of the process, needles from different biodissolvable materials, as well as two-dimensional needle arrays with different geometries and dimensions, are fabricated. Further, needles incorporating anti-inflammatory drugs are created to show the co-delivery potential of the needles. An automated insertion device is developed for repeatable and precise implantation of needle-encased probes into brain tissue. Insertion of the needles without mechanical failure, and their subsequent dissolution are demonstrated. It is concluded that ultra-miniature, ultra-compliant probes and associated biodissolvable delivery needles can be successfully fabricated, and the use of the ultra-compliant meandered probes results in drastic reduction in strains imposed in the tissue as compared to stiff probes, thereby showing promise toward chronic applications.


Asunto(s)
Electrodos Implantados , Fenómenos Mecánicos , Microtecnología/instrumentación , Agujas , Interfaces Cerebro-Computador , Módulo de Elasticidad , Diseño de Equipo , Modelos Biológicos
15.
J Pharm Sci ; 105(11): 3453-3457, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27544434

RESUMEN

Autoinflammatory skin diseases are characterized by a disequilibrium of cytokines in the local skin microenvironment, suggesting that local delivery of therapeutics, including anticytokine antibodies, may provide benefit without the unwanted off-target effects of systemically delivered therapies. Rapid diffusion of therapeutics away from the target site has been a challenge to the development of local therapies. Conjugation of high molecular weight hydrophilic polymers to cytokine neutralizing mAbs has been shown to be an effective strategy for local control of inflammation in healing burn wounds. However, the burn application is unique because the skin barrier is already breached. For the treatment of autoinflammatory skin diseases, the major challenge for local delivery lies in penetrating the stratum corneum. Here, we investigate a new therapeutic approach combining the use of tip-loaded dissolvable microneedle arrays (TL-dMNAs) for local application of polymer-conjugated antibody inhibitors of tumor-necrosis-factor-alpha (TNF-α). Specifically, intradermal delivery and pharmacokinetics of (anti-TNF-α-Ab)-(high molecular weight hyaluronic acid [HA]) conjugates from tip-loaded, obelisk-shaped dissolvable microneedle arrays were investigated in living human skin. The results indicate (1) TL-dMNAs can be successfully fabricated to integrate (anti-TNF-α-Ab)-HA at the tip portion of the microneedles while preserving the biological activity necessary for antibody ligand binding; (2) (anti-TNF-α-Ab)-HA can be effectively delivered into human skin using obelisk-shaped TL-dMNAs; and (3) polymer conjugation effectively inhibits antibody diffusion from the delivery site. Taken together, these results support the evaluation of microneedle array-based delivery of varying polymer-antibody conjugates for the treatment of inflammatory skin diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Epidermis/metabolismo , Microinyecciones/métodos , Polímeros/metabolismo , Absorción Cutánea/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Administración Cutánea , Epidermis/efectos de los fármacos , Humanos , Polímeros/administración & dosificación , Absorción Cutánea/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
16.
Soft Matter ; 12(15): 3527-37, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26979521

RESUMEN

The effect of polymer modification on the deformation characteristics and processibility of particle assembly structures is analyzed as a function of particle size and degree of polymerization of surface-tethered chains. A pronounced increase of the fracture toughness (by approximately one order of magnitude) is observed as the degree of polymerization exceeds a threshold value that increases with particle size. The threshold value is interpreted as being related to the transition of tethered chains from stretched-to-relaxed conformation (and the associated entanglement of tethered chains) and agrees with predictions from scaling theory. The increase in toughness is reduced with increasing particle size - this effect is rationalized as a consequence of the decrease of entanglement density with increasing dimension of interstitial (void) space in particle array structures. The increased fracture toughness of particle brush materials (with sufficient degree of polymerization of tethered chains) enables the fabrication of ordered colloidal films and even complex 3D shapes by scalable polymer processing techniques, such as spin coating and micromolding. The results, therefore, suggest new opportunities for the processing of colloidal material systems that could find application in the economical fabrication of functional components or systems compromised of colloidal materials.

17.
Acta Biomater ; 24: 96-105, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26093066

RESUMEN

Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here, we evaluated the use of tip-loaded dissolvable microneedle arrays (MNAs) for localized intradermal delivery of anti-TNF-α Ab. MNAs with obelisk shape microneedles that incorporate the antibody cargo in the needle tips were created from carboxymethylcellulose (CMC) using a micromilling/spin-casting fabrication method. We found that anti-TNF-α Ab integrated into MNAs using this room temperature fabrication process maintained conformationally dependent TNF-α binding activity. Further, these MNAs efficiently delivered anti-TNF-α antibodies to the dermis of human skin with clinically applicable release profiles. To evaluate MNA delivered anti-TNF-α Ab function, we applied anti-TNF-α Ab containing MNAs to established psoriasiform lesions on the skin of mice. MNA anti-TNF-α Ab treatment reduced key biomarkers of psoriasiform inflammation including epidermal thickness and IL-1ß expression. Taken together, these results demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans, and support the development of MNA mediated antibody delivery for clinical applications. STATEMENT OF SIGNIFICANCE: Tumor necrosis factor-alpha (TNF-α) specific antibodies (anti-TNF-α Ab) have been shown to be potent TNF inhibitors and effective therapeutics for a range of inflammatory diseases. Typically, these drugs are administered systemically, but systemic dosing sufficient to achieve locally effective concentrations in peripheral tissues has been associated with systemic immunosuppression and related adverse events. Here we demonstrate efficient and biologically effective MNA delivery of anti-TNF-α Ab to the intradermal microenvironment of the skin in mice and humans. These results support the development of MNA mediated antibody delivery of therapeutic antibodies for clinical applications.


Asunto(s)
Anticuerpos/farmacología , Sistemas de Liberación de Medicamentos , Agujas , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Epidermis/metabolismo , Epidermis/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Inyecciones Intradérmicas/instrumentación , Inyecciones Intradérmicas/métodos , Interleucina-1beta/biosíntesis , Ratones , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Psoriasis/patología
18.
Pharm Res ; 31(1): 117-35, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23904139

RESUMEN

PURPOSE: Design and evaluate a new micro-machining based approach for fabricating dissolvable microneedle arrays (MNAs) with diverse geometries and from different materials for dry delivery to skin microenvironments. The aims are to describe the new fabrication method, to evaluate geometric and material capability as well as reproducibility of the method, and to demonstrate the effectiveness of fabricated MNAs in delivering bioactive molecules. METHODS: Precise master molds were created using micromilling. Micromolding was used to create elastomer production molds from master molds. The dissolvable MNAs were then fabricated using the spin-casting method. Fabricated MNAs with different geometries were evaluated for reproducibility. MNAs from different materials were fabricated to show material capability. MNAs with embedded bioactive components were tested for functionality on human and mice skin. RESULTS: MNAs with different geometries and from carboxymethyl cellulose, polyvinyl pyrrolidone and maltodextrin were created reproducibly using our method. MNAs successfully pierce the skin, precisely deliver their bioactive cargo to skin and induce specific immunity in mice. CONCLUSIONS: We demonstrated that the new fabrication approach enables creating dissolvable MNAs with diverse geometries and from different materials reproducibly. We also demonstrated the application of MNAs for precise and specific delivery of biomolecules to skin microenvironments in vitro and in vivo.


Asunto(s)
Productos Biológicos/administración & dosificación , Sistemas de Liberación de Medicamentos/instrumentación , Diseño de Equipo/instrumentación , Microinyecciones/instrumentación , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Ratones , Microinyecciones/métodos , Agujas , Reproducibilidad de los Resultados , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...