Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Trauma Acute Care Surg ; 92(2): 313-322, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738997

RESUMEN

BACKGROUND: The earliest measurable changes to postinjury platelet biology may be in the platelet transcriptome, as platelets are known to carry messenger ribonucleic acids (RNAs), and there is evidence in other inflammatory and infectious disease states of differential and alternative platelet RNA splicing in response to changing physiology. Thus, the aim of this exploratory pilot study was to examine the platelet transcriptome and platelet RNA splicing signatures in trauma patients compared with healthy donors. METHODS: Preresuscitation platelets purified from trauma patients (n = 9) and healthy donors (n = 5) were assayed using deep RNA sequencing. Differential gene expression analysis, weighted gene coexpression network analysis, and differential alternative splicing analyses were performed. In parallel samples, platelet function was measured with platelet aggregometry, and clot formation was measured with thromboelastography. RESULTS: Differential gene expression analysis identified 49 platelet RNAs to have differing abundance between trauma patients and healthy donors. Weighted gene coexpression network analysis identified coexpressed platelet RNAs that correlated with platelet aggregation. Differential alternative splicing analyses revealed 1,188 splicing events across 462 platelet RNAs that were highly statistically significant (false discovery rate <0.001) in trauma patients compared with healthy donors. Unsupervised principal component analysis of these platelet RNA splicing signatures segregated trauma patients in two main clusters separate from healthy controls. CONCLUSION: Our findings provide evidence of finetuning of the platelet transcriptome through differential alternative splicing of platelet RNA in trauma patients and that this finetuning may have relevance to downstream platelet signaling. Additional investigations of the trauma platelet transcriptome should be pursued to improve our understanding of the platelet functional responses to trauma on a molecular level.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/genética , Plaquetas/metabolismo , ARN/metabolismo , Transcriptoma , Heridas y Lesiones/complicaciones , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Proyectos Piloto , Activación Plaquetaria , Agregación Plaquetaria , Tromboelastografía
2.
J Trauma Acute Care Surg ; 88(6): 742-751, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32195992

RESUMEN

BACKGROUND: The mechanisms of aberrant circulating platelet behavior following injury remain unclear. Platelets retain megakaryocyte immature ribonucleic acid (RNA) splicing and protein synthesis machinery to alter their functions based on physiologic signals. We sought to identify fluctuating platelet-specific RNA transcripts in cell-free plasma (CFP) from traumatic brain injury (TBI) patients as proof-of-concept for using RNA sequencing to improve our understanding of postinjury platelet behavior. We hypothesized that we could identify differential expression of activated platelet-specific spliced RNA transcripts from CFP of patients with isolated severe fatal TBI (fTBI) compared with minimally injured trauma controls (t-controls), filtered by healthy control (h-control) data sets. METHODS: High-read depth RNA sequencing was applied to CFP from 10 patients with fTBI (Abbreviated Injury Scale [AIS] for head ≥3, AIS for all other categories <3, and expired) and five t-controls (Injury Severity Score ≤1, and survived). A publicly available CFP RNA sequencing data set from 23 h-controls was used to determine the relative steady state of splice-form RNA transcripts discoverable in CFP. Activated platelet-specific spliced RNA transcripts were derived from studies of ex vivo platelet activation and identified by splice junction presence greater than 1.5-fold or less than 0.67-fold ex vivo nonactivated platelet-specific RNA transcripts. RESULTS: Forty-two differentially spliced activated platelet-specific RNA transcripts in 34 genes were altered in CFP from fTBI patients (both upregulated and downregulated). CONCLUSION: We have discovered differentially expressed activated platelet-specific spliced RNA transcripts present in CFP from isolated severe fTBI patients that are upregulated or downregulated compared with minimally injured trauma controls. This proof-of-concept suggests that a pool of immature platelet RNAs undergo splicing events after injury for presumed modulation of platelet protein products involved in platelet function. This validates our exploration of injury-induced platelet RNA transcript modulation as an upstream "liquid biopsy" to identify novel postinjury platelet biology and treatment targets for aberrant platelet behavior. LEVEL OF EVIDENCE: Diagnostic tests, level V.


Asunto(s)
Trastornos de la Coagulación Sanguínea/diagnóstico , Plaquetas/patología , Lesiones Traumáticas del Encéfalo/sangre , Ácidos Nucleicos Libres de Células/aislamiento & purificación , RNA-Seq , Adulto , Trastornos de la Coagulación Sanguínea/sangre , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/patología , Plaquetas/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/mortalidad , Estudios de Casos y Controles , Femenino , Humanos , Puntaje de Gravedad del Traumatismo , Biopsia Líquida/métodos , Estudios Longitudinales , Masculino , Activación Plaquetaria/genética , Agregación Plaquetaria/genética , Prueba de Estudio Conceptual , Estudios Prospectivos , Empalme del ARN , Adulto Joven
3.
J Trauma Acute Care Surg ; 89(1): 20-28, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32218020

RESUMEN

BACKGROUND: Platelet behavior in trauma-induced coagulopathy is poorly understood. Injured patients have impaired platelet aggregation (dysfunction) in ex vivo agonist-stimulated platelet aggregometry (PA). However, PA assumes that platelets are inactivated before ex vivo stimulated aggregation, which may be altered by injury. We hypothesized that following trauma, platelet aggregation (area under the curve) is decreased regardless of injury burden, but that (1) minor injury is associated with an increased baseline electrical impedance, characteristic of a functional platelet phenotype (platelets that activate in response to injury), and that (2) severe injury is not associated with an increased baseline electrical impedance, characteristic of a dysfunctional phenotype (platelets that do not activate well in response to injury) compared with healthy controls. METHODS: Blood from 458 trauma patients and 30 healthy donors was collected for PA. Baseline electrical impedance (Ω); platelet aggregation stimulated by adenosine diphosphate, collagen, thrombin, and arachidonic acid; and rotational thromboelastometry were measured. Multivariate regression was performed to identify associations of PA measures with blood transfusion. RESULTS: Compared with healthy controls, injured patients had impaired platelet aggregation in response to ex vivo stimulation, regardless of injury burden. However, minorly injured patients had increased endogenous platelet activation (baseline electrical impedance, Ω: with shock, p = 0.012; without shock, p = 0.084), but severely injured patients did not have significant increases in endogenous platelet activation (baseline electrical impedance, Ω: with shock, p = 0.86; without shock, p = 0.37). For every 10 Ω increase in baseline electrical impedance, there was an 8% decrease in units of blood transfused in the first 24 h (-0.08; confidence interval, -0.14 to -0.02; p = 0.015). CONCLUSION: Injury and shock confer differential patterns of platelet aggregation in PA. Minor injury overestimates the presence of platelet dysfunction, while severe injury induces a truly dysfunctional phenotype-platelets that do not activate nor aggregate appropriately after injury. This is consequential in improving accurate phenotyping of postinjury platelet behavior for platelet-based therapeutics. LEVEL OF EVIDENCE: Prognostic, level IV.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Agregación Plaquetaria , Choque/sangre , Heridas y Lesiones/sangre , Heridas y Lesiones/complicaciones , Adulto , Estudios de Casos y Controles , Impedancia Eléctrica , Femenino , Humanos , Masculino , Fenotipo , Activación Plaquetaria , Pruebas de Función Plaquetaria , Tromboelastografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...