Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Rev Immunol ; 24(1): 33-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37400646

RESUMEN

Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.


Asunto(s)
Linfocitos T CD8-positivos , Narcolepsia , Animales , Humanos , Narcolepsia/genética , Alelos
2.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854625

RESUMEN

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

3.
Elife ; 122023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698546

RESUMEN

Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.


When you are ill, your behaviour changes. You sleep more, eat less and are less likely to go out and be active. This behavioural change is called the 'sickness response' and is believed to help the immune system fight infection. An area of the brain called the hypothalamus helps to regulate sleep and appetite. Previous research has shown that when humans are ill, the immune system sends signals to the hypothalamus, likely initiating the sickness response. However, it was not clear which brain cells in the hypothalamus are involved in the response and how long after infection the brain returns to its normal state. To better understand the sickness response, Lemcke et al. infected mice with influenza then extracted and analysed brain tissue at different timepoints. The experiments showed that the major changes to gene expression in the hypothalamus early during an influenza infection are not happening in neurons ­ the cells in the brain that transmit electrical signals and usually control behaviour. Instead, it is cells called glia ­ which provide support and immune protection to the neurons ­ that change during infection. The findings suggest that these cells prepare to protect the neurons from influenza should the virus enter the brain. Lemcke et al. also found that the brain takes a long time to go back to normal after an influenza infection. In infected mice, molecular changes in brain cells could be detected even after the influenza infection had been cleared from the respiratory system. In the future, these findings may help to explain why some people take longer than others to fully recover from viral infections such as influenza and aid development of medications that speed up recovery.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Hipotálamo , Núcleo Solitario , Apetito
4.
Sleep ; 46(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36562330

RESUMEN

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is characterized by unstable sleep-wake and muscle tonus regulation during sleep. We characterized dream enactment and muscle activity during sleep in a cohort of post-H1N1 NT1 patients and their siblings, and analyzed whether clinical phenotypic characteristics and major risk factors are associated with increased muscle activity. METHODS: RBD symptoms and polysomnography m. tibialis anterior electromyographical signals [long (0.5-15 s); short (0.1-0.49 s)] were compared between 114 post-H1N1 NT1 patients and 89 non-narcoleptic siblings. Association sub-analyses with RBD symptoms, narcoleptic symptoms, CSF hypocretin-1 levels, and major risk factors [H1N1-(Pandemrix)-vaccination, HLA-DQB1*06:02-positivity] were performed. RESULTS: RBD symptoms, REM and NREM long muscle activity indices and REM short muscle activity index were significantly higher in NT1 patients than siblings (all p < 0.001). Patients with undetectable CSF hypocretin-1 levels (<40 pg/ml) had significantly more NREM periodic long muscle activity than patients with low but detectable levels (40-150 pg/ml) (p = 0.047). In siblings, REM and NREM sleep muscle activity indices were not associated with RBD symptoms, other narcolepsy symptoms, or HLA-DQB1*06:02-positivity. H1N1-(Pandemrix)-vaccination status did not predict muscle activity indices in patients or siblings. CONCLUSION: Increased REM and NREM muscle activity and more RBD symptoms is characteristic of NT1, and muscle activity severity is predicted by hypocretin deficiency severity but not by H1N1-(Pandemrix)-vaccination status. In the patients' non-narcoleptic siblings, neither RBD symptoms, core narcoleptic symptoms, nor the major NT1 risk factors is associated with muscle activity during sleep, hence not indicative of a phenotypic continuum.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Humanos , Orexinas , Hermanos , Narcolepsia/etiología , Narcolepsia/diagnóstico , Sueño , Músculo Esquelético
5.
Trends Mol Med ; 29(1): 61-69, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400667

RESUMEN

Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.


Asunto(s)
Narcolepsia , Humanos , Péptidos y Proteínas de Señalización Intracelular , Narcolepsia/diagnóstico , Narcolepsia/tratamiento farmacológico , Narcolepsia/genética , Neuropéptidos/uso terapéutico , Receptores de Orexina/uso terapéutico , Orexinas/genética
6.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452310

RESUMEN

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Asunto(s)
MicroARNs , Neuropéptidos , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , MicroARNs/genética , Neuropéptidos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sueño/genética , Vigilia/genética , Pez Cebra/metabolismo
7.
Sleep Med ; 85: 271-279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34388506

RESUMEN

STUDY OBJECTIVES: Evidence suggests a cell-mediated autoimmune pathogenesis for narcolepsy type 1 (NT1), but it is not clear whether the disease is associated with overall changes in T cell subsets. The increase in NT1 incidence after H1N1 vaccination campaign with the Pandemrix™ vaccine suggests that disease-relevant changes in the immune system following this vaccination were important. In this study, we aimed to investigate differentiated T cell subsets and levels of CD25 and CD69 activation markers in a cohort of mainly Pandemrix™-vaccinated NT1 patients compared with their vaccinated and unvaccinated siblings. METHODS: Peripheral blood mononuclear cells were collected in parallel and analysed with flow cytometry in 31 NT1 patients with disease onset after the 2009 influenza A (H1N1) pandemic and/or Pandemrix™ vaccination and 45 of their non-narcoleptic siblings (29/31 and 34/45 vaccinated, respectively). RESULTS: We observed significantly lower effector memory CD4+ T cell levels in NT1 patients compared to their siblings, when controlling for HLA DQB1∗06:02 and vaccination status. Further, within the sibling group, vaccination status significantly affected frequencies of central memory and CD8+CD25+ T cells, and HLA DQB1∗06:02 status significantly affected frequencies of CD4+CD25+ T cells. CONCLUSION: We confirm that NT1 is associated with lower levels of effector memory CD4+ T cells in peripheral blood. Importantly, this finding was only significant when controlling for vaccination and HLA status in both patients and controls. We thus demonstrate the importance of characterizing such factors (eg HLA and vaccination) when studying T cell subsets in NT1. This might explain earlier conflicting results.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Narcolepsia , Linfocitos T CD4-Positivos , Cadenas beta de HLA-DQ , Humanos , Gripe Humana/prevención & control , Leucocitos Mononucleares , Hermanos , Vacunación
8.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330837

RESUMEN

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Oxibato de Sodio/metabolismo , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ácidos Carboxílicos/farmacología , Cristalografía por Rayos X , Ciclopentanos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neuroprotección , Unión Proteica , Dominios Proteicos , Transducción de Señal
9.
Brain Commun ; 3(2): fcab050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977264

RESUMEN

The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-1/orexin-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or serum samples to 65°C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1.

10.
Sleep ; 44(8)2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-33710305

RESUMEN

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is associated with hypocretin neuron loss. However, there are still unexplained phenotypic NT1 features. We investigated the associations between clinical and sleep phenotypic characteristics, the NT1-associated P2RY11 polymorphism rs2305795, and P2Y11 protein levels in T lymphocytes in patients with NT1, their first-degree relatives and unrelated controls. METHODS: The P2RY11 SNP was genotyped in 100 patients (90/100 H1N1-(Pandemrix)-vaccinated), 119 related and 123 non-related controls. CD4 and CD8 T lymphocyte P2Y11 protein levels were quantified using flow cytometry in 167 patients and relatives. Symptoms and sleep recording parameters were also collected. RESULTS: We found an association between NT1 and the rs2305795 A allele (OR = 2, 95% CI (1.3, 3.0), p = 0.001). T lymphocyte P2Y11 protein levels were significantly lower in patients and relatives homozygous for the rs2305795 risk A allele (CD4: p = 0.012; CD8: p = 0.007). The nocturnal sleep fragmentation index was significantly negatively correlated with patients' P2Y11 protein levels (CD4: p = 0.004; CD8: p = 0.006). Mean MSLT sleep latency, REM-sleep latency, and core clinical symptoms were not associated with P2Y11 protein levels. CONCLUSIONS: We confirmed that the P2RY11 polymorphism rs2305795 is associated with NT1 also in a mainly H1N1-(Pandemrix)-vaccinated cohort. We demonstrated that homozygosity for the A risk allele is associated with lower P2Y11 protein levels. A high level of nocturnal sleep fragmentation was associated with low P2Y11 levels in patients. This suggests that P2Y11 has a previously unknown function in sleep-wake stabilization that affects the severity of NT1.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Narcolepsia , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Narcolepsia/genética , Sueño/genética , Privación de Sueño/genética , Linfocitos T
11.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895383

RESUMEN

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor 1 de Crecimiento de Fibroblastos/administración & dosificación , Hipoglucemiantes/administración & dosificación , Hipotálamo/efectos de los fármacos , Proteínas Recombinantes/administración & dosificación , Proteína Relacionada con Agouti/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Glucemia/análisis , Comunicación Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/administración & dosificación , Sacarosa en la Dieta/efectos adversos , Humanos , Hipotálamo/citología , Hipotálamo/patología , Inyecciones Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormonas Estimuladoras de los Melanocitos/administración & dosificación , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , RNA-Seq , Receptor de Melanocortina Tipo 4/genética , Receptores de Melanocortina/antagonistas & inhibidores , Receptores de Melanocortina/metabolismo , Inducción de Remisión/métodos , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual , Técnicas Estereotáxicas , Transcriptoma/efectos de los fármacos
12.
Sleep ; 43(10)2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32227223

RESUMEN

Narcolepsy type 1 is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the hypothalamus. Ample genetic and epidemiological evidence points in the direction of a pathogenesis involving the immune system, but this is not considered proof of autoimmunity. In fact, it remains a matter of debate how to prove that a given disease is indeed an autoimmune disease. In this review, a set of commonly used criteria for autoimmunity is described and applied to narcolepsy type 1. In favor of the autoimmune hypothesis are data showing that in narcolepsy type 1 a specific adaptive immune response is directed to hypocretin/orexin neurons. Autoreactive T cells and autoantibodies have been detected in blood samples from patients, but it remains to be seen if these T cells or antibodies are in fact present in the hypothalamus. It is also unclear if the autoreactive T cells and/or autoantibodies can transfer the disease to healthy individuals or animals or if immunization with the proposed autoantigens can induce the disease in animal models. Most importantly, it is still controversial whether suppression of the autoimmune response can prevent disease progression. In conclusion, narcolepsy type 1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, but more and more results are pointing in that direction.


Asunto(s)
Narcolepsia , Animales , Autoanticuerpos , Autoantígenos , Autoinmunidad , Humanos , Hipotálamo/metabolismo , Orexinas/metabolismo
13.
J Neurosci ; 40(11): 2371-2380, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047056

RESUMEN

Chronic electroencephalography (EEG) is a widely used tool for monitoring cortical electrical activity in experimental animals. Although chronic implants allow for high-quality, long-term recordings in preclinical studies, the electrodes are foreign objects and might therefore be expected to induce a local inflammatory response. We here analyzed the effects of chronic cranial electrode implantation on glymphatic fluid transport and in provoking structural changes in the meninges and cerebral cortex of male and female mice. Immunohistochemical analysis of brain tissue and dura revealed reactive gliosis in the cortex underlying the electrodes and extensive meningeal lymphangiogenesis in the surrounding dura. Meningeal lymphangiogenesis was also evident in mice prepared with the commonly used chronic cranial window. Glymphatic influx of a CSF tracer was significantly enhanced at 30 d postsurgery in both awake and ketamine-xylazine anesthetized mice with electrodes, supporting the concept that glymphatic influx and intracranial lymphatic drainage are interconnected. Altogether, the experimental results provide clear evidence that chronic implantation of EEG electrodes is associated with significant changes in the brain's fluid transport system. Future studies involving EEG recordings and chronic cranial windows must consider the physiological consequences of cranial implants, which include glial scarring, meningeal lymphangiogenesis, and increased glymphatic activity.SIGNIFICANCE STATEMENT This study shows that implantation of extradural electrodes provokes meningeal lymphangiogenesis, enhanced glymphatic influx of CSF, and reactive gliosis. The analysis based on CSF tracer injection in combination with immunohistochemistry showed that chronically implanted electroencephalography electrodes were surrounded by lymphatic sprouts originating from lymphatic vasculature along the dural sinuses and the middle meningeal artery. Likewise, chronic cranial windows provoked lymphatic sprouting. Tracer influx assessed in coronal slices was increased in agreement with previous reports identifying a close association between glymphatic activity and the meningeal lymphatic vasculature. Lymphangiogenesis in the meninges and altered glymphatic fluid transport after electrode implantation have not previously been described and adds new insights to the foreign body response of the CNS.


Asunto(s)
Duramadre/metabolismo , Electrodos Implantados/efectos adversos , Reacción a Cuerpo Extraño/etiología , Gliosis/etiología , Sistema Glinfático/fisiología , Linfangiogénesis , Animales , Astrocitos/fisiología , Corteza Cerebral/patología , Líquido Cefalorraquídeo/fisiología , Duramadre/patología , Electroencefalografía/instrumentación , Femenino , Reacción a Cuerpo Extraño/metabolismo , Gliosis/metabolismo , Gliosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Técnica de Ventana Cutánea , Fases del Sueño/fisiología
14.
Sci Rep ; 10(1): 1148, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980690

RESUMEN

To improve the understanding of the complex biological processes underlying the development of non-alcoholic steatohepatitis (NASH), a multi-omics approach combining bulk RNA-sequencing based transcriptomics, quantitative proteomics and single-cell RNA-sequencing was used to characterize tissue biopsies from histologically validated diet-induced obese (DIO) NASH mice compared to chow-fed controls. Bulk RNA-sequencing and proteomics showed a clear distinction between phenotypes and a good correspondence between mRNA and protein level regulations, apart from specific regulatory events discovered by each technology. Transcriptomics-based gene set enrichment analysis revealed changes associated with key clinical manifestations of NASH, including impaired lipid metabolism, increased extracellular matrix formation/remodeling and pro-inflammatory responses, whereas proteomics-based gene set enrichment analysis pinpointed metabolic pathway perturbations. Integration with single-cell RNA-sequencing data identified key regulated cell types involved in development of NASH demonstrating the cellular heterogeneity and complexity of NASH pathogenesis.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Proteómica/métodos , Transcriptoma , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , ARN/genética , ARN/aislamiento & purificación , Alineación de Secuencia , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espectrometría de Masas en Tándem
15.
Front Immunol ; 9: 1159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29937766

RESUMEN

Adenosine triphosphate (ATP) is known to induce cell death in T lymphocytes at high extracellular concentrations. CD4+ and CD8+ T lymphocytes have a differential response to ATP, which in mice is due to differences in the P2X7 receptor expression levels. By contrast, we observed that the difference in human CD4+ and CD8+ T lymphocyte response toward the synthetic ATP-analog BzATP is not explained by a difference in human P2X7 receptor expression. Rather, the BzATP-induced human P2X7 receptor response in naïve and immune-activated lymphocyte subtypes correlated with the expression of another ATP-binding receptor: the human P2Y11 receptor. In a recombinant expression system, the coexpression of the human P2Y11 receptor counteracted BzATP-induced human P2X7 receptor-driven lactate dehydrogenase release (a marker of cell death) and pore formation independent of calcium signaling. A mutated non-signaling human P2Y11 receptor had a similar human P2X7 receptor-inhibitory effect on pore formation, thus demonstrating that the human P2X7 receptor interference was not caused by human P2Y11 receptor signaling. In conclusion, we demonstrate an important species difference in the ATP-mediated cell death between mice and human cells and show that in human T lymphocytes, the expression of the human P2Y11 receptor correlates with human P2X7 receptor-driven cell death following BzATP stimulation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2/metabolismo , Linfocitos T/fisiología , Animales , Señalización del Calcio , Muerte Celular , Células Cultivadas , Difosfonatos/farmacología , Humanos , Ratones , Naftalenosulfonatos/farmacología , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptor Cross-Talk , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7/genética , Transgenes/genética
16.
Nat Rev Dis Primers ; 3: 16100, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28179647

RESUMEN

Narcolepsy is a chronic sleep disorder that has a typical onset in adolescence and is characterized by excessive daytime sleepiness, which can have severe consequences for the patient. Problems faced by patients with narcolepsy include social stigma associated with this disease, difficulties in obtaining an education and keeping a job, a reduced quality of life and socioeconomic consequences. Two subtypes of narcolepsy have been described (narcolepsy type 1 and narcolepsy type 2), both of which have similar clinical profiles, except for the presence of cataplexy, which occurs only in patients with narcolepsy type 1. The pathogenesis of narcolepsy type 1 is hypothesized to be the autoimmune destruction of the hypocretin-producing neurons in the hypothalamus; this hypothesis is supported by immune-related genetic and environmental factors associated with the disease. However, direct evidence in support of the autoimmune hypothesis is currently unavailable. Diagnosis of narcolepsy encompasses clinical, electrophysiological and biological evaluations, but simpler and faster procedures are needed. Several medications are available for the symptomatic treatment of narcolepsy, all of which have quite good efficacy and safety profiles. However, to date, no treatment hinders or slows disease development. Improved diagnostic tools and increased understanding of the pathogenesis of narcolepsy type 1 are needed and might lead to therapeutic or even preventative interventions.


Asunto(s)
Narcolepsia/complicaciones , Narcolepsia/fisiopatología , Adyuvantes Anestésicos/farmacología , Adyuvantes Anestésicos/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Biomarcadores/análisis , Cataplejía/complicaciones , Cataplejía/etiología , Predisposición Genética a la Enfermedad/epidemiología , Cadenas beta de HLA-DQ/análisis , Humanos , Modafinilo , Narcolepsia/epidemiología , Orexinas/deficiencia , Calidad de Vida/psicología , Factores de Riesgo , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/epidemiología , Oxibato de Sodio/farmacología , Oxibato de Sodio/uso terapéutico , Promotores de la Vigilia/farmacología , Promotores de la Vigilia/uso terapéutico
17.
J Clin Sleep Med ; 13(2): 235-243, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27855741

RESUMEN

STUDY OBJECTIVES: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. METHODS: Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition (ICSD-3) and 20 healthy controls. HCRT-1 and MCH levels were quantified by radioimmunoassay and correlated with clinical symptoms, polysomnography (PSG), and Multiple Sleep Latency Test (MSLT) parameters. RESULTS: CSF and plasma MCH levels were not significantly different between narcolepsy patients regardless of ICSD-3 subtype, HCRT-1 levels, or compared to controls. CSF MCH and HCRT-1 levels were not significantly correlated. Multivariate regression models of CSF MCH levels, age, sex, and body mass index predicting clinical, PSG, and MSLT parameters did not reveal any significant associations to CSF MCH levels. CONCLUSIONS: Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH measurement is not an informative diagnostic marker for narcolepsy.


Asunto(s)
Hormonas Hipotalámicas/sangre , Hormonas Hipotalámicas/líquido cefalorraquídeo , Melaninas/sangre , Melaninas/líquido cefalorraquídeo , Narcolepsia/sangre , Narcolepsia/líquido cefalorraquídeo , Hormonas Hipofisarias/sangre , Hormonas Hipofisarias/líquido cefalorraquídeo , Sueño/fisiología , Adulto , Dinamarca , Femenino , Humanos , Masculino , Polisomnografía , Sueño REM/fisiología
19.
J Sleep Res ; 25(3): 356-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26809504

RESUMEN

Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European Narcolepsy Network is introduced. The database structure, standardization of data acquisition and quality control procedures are described, and an overview provided of the first 1079 patients from 18 European specialized centres. Due to its standardization this continuously increasing data pool is most promising to provide a better insight into many unsolved aspects of narcolepsy and related disorders, including clear phenotype characterization of subtypes of narcolepsy, more precise epidemiological data and knowledge on the natural history of narcolepsy, expectations about treatment effects, identification of post-marketing medication side-effects, and will contribute to improve clinical trial designs and provide facilities to further develop phase III trials.


Asunto(s)
Bases de Datos Factuales , Narcolepsia , Sistema de Registros , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cataplejía/tratamiento farmacológico , Cataplejía/epidemiología , Bases de Datos Factuales/normas , Europa (Continente)/epidemiología , Femenino , Humanos , Difusión de la Información , Internet , Masculino , Persona de Mediana Edad , Narcolepsia/tratamiento farmacológico , Narcolepsia/epidemiología , Fenotipo , Vigilancia de Productos Comercializados , Estudios Prospectivos , Control de Calidad , Enfermedades Raras/tratamiento farmacológico , Enfermedades Raras/epidemiología , Sistema de Registros/normas , Adulto Joven
20.
Eur J Hum Genet ; 23(11): 1573-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25669430

RESUMEN

Type 1 narcolepsy, an autoimmune disease affecting hypocretin (orexin) neurons, is strongly associated with HLA-DQB1*06:02. Among polymorphisms associated with the disease is single-nucleotide polymorphism rs2305795 (c.*638G>A) located within the P2RY11 gene. P2RY11 is in a region of synteny conserved in mammals and zebrafish containing PPAN, EIF3G and DNMT1 (DNA methyltransferase 1). As mutations in DNMT1 cause a rare dominant form of narcolepsy in association with deafness, cerebellar ataxia and dementia, we questioned whether the association with P2RY11 in sporadic narcolepsy could be secondary to linkage disequilibrium with DNMT1. Based on genome-wide association data from two cohorts of European and Chinese ancestry, we found that the narcolepsy association signal drops sharply between P2RY11/EIF3G and DNMT1, suggesting that the association with narcolepsy does not extend into the DNMT1 gene region. Interestingly, using transethnic mapping, we identified a novel single-nucleotide polymorphism rs3826784 (c.596-260A>G) in the EIF3G gene also associated with narcolepsy. The disease-associated allele increases EIF3G mRNA expression. EIF3G is located in the narcolepsy risk locus and EIF3G expression correlates with PPAN and P2RY11 expression. This suggests shared regulatory mechanisms that might be affected by the polymorphism and are of relevance to narcolepsy.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Narcolepsia/genética , Alelos , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Etnicidad/genética , Factor 3 de Iniciación Eucariótica/biosíntesis , Femenino , Regulación de la Expresión Génica , Cadenas beta de HLA-DQ/genética , Humanos , Masculino , Mutación , Narcolepsia/patología , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Receptores Purinérgicos P2/biosíntesis , Receptores Purinérgicos P2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...