Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000596

RESUMEN

The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants' adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport.


Asunto(s)
Proteínas Portadoras , Ciclopentanos , Oxilipinas , Pisum sativum , Hojas de la Planta , Proteínas de Plantas , Raíces de Plantas , Xilema , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Pisum sativum/metabolismo , Pisum sativum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Portadoras/metabolismo , Hojas de la Planta/metabolismo , Transporte Biológico , Reguladores del Crecimiento de las Plantas/metabolismo
2.
Biomolecules ; 13(12)2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38136605

RESUMEN

Improving nitrogen use efficiency (NUE) is one of the main ways of increasing plant productivity through genetic engineering. The modification of nitrogen (N) metabolism can affect the hormonal content, but in transgenic plants, this aspect has not been sufficiently studied. Transgenic birch (Betula pubescens) plants with the pine glutamine synthetase gene GS1 were evaluated for hormone levels during rooting in vitro and budburst under outdoor conditions. In the shoots of the transgenic lines, the content of indoleacetic acid (IAA) was 1.5-3 times higher than in the wild type. The addition of phosphinothricin (PPT), a glutamine synthetase (GS) inhibitor, to the medium reduced the IAA content in transgenic plants, but it did not change in the control. In the roots of birch plants, PPT had the opposite effect. PPT decreased the content of free amino acids in the leaves of nontransgenic birch, but their content increased in GS-overexpressing plants. A three-year pot experiment with different N availability showed that the productivity of the transgenic birch line was significantly higher than in the control under N deficiency, but not excess, conditions. Nitrogen availability did not affect budburst in the spring of the fourth year; however, bud breaking in transgenic plants was delayed compared to the control. The IAA and abscisic acid (ABA) contents in the buds of birch plants at dormancy and budburst depended both on N availability and the transgenic status. These results enable a better understanding of the interaction between phytohormones and nutrients in woody plants.


Asunto(s)
Betula , Glutamato-Amoníaco Ligasa , Betula/genética , Betula/metabolismo , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Biology (Basel) ; 12(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37372072

RESUMEN

Depending on their habitat conditions, plants can greatly change the growth rate of their roots. However, the mechanisms of such responses remain insufficiently clear. The influence of a low level of illumination on the content of endogenous auxins, their localization in leaves and transport from shoots to roots were studied and related to the lateral root branching of barley plants. Following two days' reduction in illumination, a 10-fold reduction in the emergence of lateral roots was found. Auxin (IAA, indole-3-acetic acid) content decreased by 84% in roots and by 30% in shoots, and immunolocalization revealed lowered IAA levels in phloem cells of leaf sections. The reduced content of IAA found in the plants under low light suggests an inhibition of production of this hormone under these conditions. At the same time, two-fold downregulation of the LAX3 gene expression, facilitating IAA influx into the cells, was detected in the roots, as well as a decline in auxin diffusion from shoots through the phloem by about 60%. It was suggested that the reduced emergence of lateral roots in barley under a low level of illumination was due to a disturbance of auxin transport through the phloem and down-regulation of the genes responsible for auxin transport in plant roots. The results confirm the importance of the long distance transport of auxins for the control of the growth of roots under conditions of low light. Further study of the mechanisms that control the transport of auxins from shoots to roots in other plant species is required.

4.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831337

RESUMEN

Changes in root elongation are important for the acquisition of mineral nutrients by plants. Plant hormones, cytokinins, and abscisic acid (ABA) and their interaction are important for the control of root elongation under changes in the availability of ions. However, their role in growth responses to supra-optimal concentrations of nitrates and phosphates has not been sufficiently studied and was addressed in the present research. Effects of supra-optimal concentrations of these ions on root elongation and distribution of cytokinins between roots and shoots were studied in ABA-deficient barley mutant Az34 and its parental variety, Steptoe. Cytokinin concentration in the cells of the growing root tips was analyzed with the help of an immunohistochemical technique. Increased concentrations of nitrates and phosphates led to the accumulation of ABA and cytokinins in the root tips, accompanied by a decline in shoot cytokinin content and inhibition of root elongation in Steptoe. Neither of the effects were detected in Az34, suggesting the importance of the ability of plants to accumulate ABA for the control of these responses. Since cytokinins are known to inhibit root elongation, the effect of supra-optimal concentration of nitrates and phosphates on root growth is likely to be due to the accumulation of cytokinins brought about by ABA-induced inhibition of cytokinin transport from roots to shoots.


Asunto(s)
Ácido Abscísico/metabolismo , Citocininas/metabolismo , Hordeum/crecimiento & desarrollo , Nitratos/farmacología , Fosfatos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Transporte Biológico/efectos de los fármacos , Hordeum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Transpiración de Plantas/efectos de los fármacos
5.
Cells ; 10(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567681

RESUMEN

The trans-membrane carrier AtENT3 is known to transport externally supplied cytokinin ribosides and thus promote uptake by cells. However, its role in distributing either exogenous or endogenous cytokinins within the intact plant has not hitherto been reported. To test this, we used ent3-1 mutant Arabidopsis seedlings in which the gene is not expressed due to a T-DNA insertion, and examined the effect on the concentration and distribution of either endogenous cytokinins or exogenous trans-zeatin riboside applied to the roots. In the mutant, accumulation of endogenous cytokinins in the roots was reduced and capacity to deliver externally supplied trans-zeatin riboside to the shoots was increased suggesting involvement of equilibrative nucleoside (ENT) transporter in the control of cytokinin distribution in the plants. Roots of ent3-1 were longer in the mutant in association with their lower cytokinin concentration. We concluded that the ENT3 transporter participates in partitioning endogenous cytokinins between the apoplast and the symplast by facilitating their uptake by root cells thereby limiting cytokinin export to the shoots through the xylem. Dilution of the mineral nutrient solution lowered endogenous cytokinin concentration in the roots of both wild type (WT) and ent3-1 plants accompanied by promotion of root elongation. Nevertheless, cytokinin content was lower, while roots were longer in the ent3-1 mutant than in the WT under either normal or deficient mineral nutrition suggesting a significant role of ENT3 transporter in the control of cytokinin level in the roots and the rate of their elongation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Mutación/genética , Raíces de Plantas/anatomía & histología , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Plants (Basel) ; 9(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297400

RESUMEN

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA's ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.

7.
Protoplasma ; 255(5): 1581-1594, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29637285

RESUMEN

The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine. The obtained data show ribosylation of the zeatin applied to the leaves and its elevated level in the phloem sap supported by in vivo localization showing the presence of ribosylated forms of zeatin in leaf vessels. This suggests that conversion of zeatin to its riboside is important for the shoot-to-root transport of zeatin-type cytokinins in wheat. Exogenous isopentenyladenine was not modified, but diffused from the leaves as free base. These metabolic differences may not be universal and may depend on the plant species and age. Although the measurements of cytokinins in the phloem sap and root tissue is the most defining for determining cytokinin transport, study of immunolocalization of either free cytokinin bases or their ribosylated forms may be a valuable source of information for predicting their transport in the phloem and to the roots.


Asunto(s)
Citocininas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Triticum/metabolismo , Transporte Biológico , Isopenteniladenosina/metabolismo , Floema/metabolismo , Zeatina/metabolismo
8.
J Exp Bot ; 65(9): 2287-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24692646

RESUMEN

Cytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots. To this end, we collapsed the proton gradient across root membranes using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to inhibit secondary active uptake of exogenous and endogenous cytokinins. We report the impact of CCCP on cytokinin concentrations and delivery in xylem sap and on accumulation in shoots of 7-day-old wheat plants in the presence and absence of exogenous cytokinin applied as zeatin. Zeatin treatment increased the total accumulation of cytokinin in roots and shoots but the effect was smaller for the shoots. Immunohistochemical localization of cytokinins using zeatin-specific antibodies showed an increase in immunostaining of the cells adjacent to xylem in the roots of zeatin-treated plants. Inhibition of secondary active cytokinin uptake by CCCP application decreased cytokinin accumulation in root cells but increased both flow from the roots and accumulation in the shoots. The possible importance of secondary active uptake of cytokinins by root cells for the control of their export to the shoot is discussed.


Asunto(s)
Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Triticum/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Triticum/metabolismo
9.
Funct Plant Biol ; 36(1): 66-72, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32688628

RESUMEN

Although nutrient deprivation alters the concentrations of several plant hormones, the role of each in decreasing shoot-to-root ratio is not clear. A 10-fold dilution of the nutrient concentration supplied to hydroponically-grown 7-day-old durum wheat (Triticum turgidum L. ssp. durum Desf.) plants decreased shoot growth, shoot-to-root ratio and shoot and root cytokinin concentrations, increased shoot ABA concentration and shoot cytokinin oxidase activity, but had no effect on xylem sap ABA and cytokinin concentrations. Nutrient deprivation also increased xylem concentrations of conjugated ABA. The role of ABA in these responses was addressed by adding 11.4 µm ABA to the nutrient solution of well fertilised plants, or 1.2 mm fluridone (an inhibitor of ABA biosynthesis) to the nutrient solution of nutrient-deprived plants. The former induced similar changes in shoot-to-root ratio (by inhibiting shoot growth), shoot ABA concentration, shoot and root cytokinin concentrations and shoot cytokinin oxidase activity as nutrient deprivation. Conversely, fluridone addition to nutrient-deprived plants restored shoot-to-root ratio (by inhibiting root growth), shoot ABA concentration, shoot and root cytokinin concentrations to levels similar to well fertilised plants. Although root growth maintenance during nutrient deprivation depends on a threshold ABA concentration, shoot growth inhibition is independent of shoot ABA status. Although fluridone decreased shoot cytokinin oxidase activity of nutrient-deprived plants, it was still 1.7-fold greater than well fertilised plants, implying that nutrient deprivation could also activate shoot cytokinin oxidase independently of ABA. These data question the root signal basis of cytokinin action, but demonstrate that changes in ABA status can regulate shoot cytokinin concentrations via altering their metabolism.

10.
J Plant Physiol ; 165(12): 1274-9, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-18166245

RESUMEN

We describe the involvement of abscisic acid (ABA) in the control of differential growth of roots and shoots of nutrient limited durum wheat plants. A ten-fold dilution of the optimal concentration of nutrient solution inhibited shoot growth, while root growth remained unchanged, resulting in a decreased shoot/root ratio. Addition of fluridone (inhibitor of ABA synthesis) prevented growth allocation in favour of the roots. This suggests the involvement of ABA in the redirecting of growth in favour of roots under limited nutrient supply. The ABA content was greater in shoots and growing apical root parts of starved plants than in nutrient sufficient plants. Accumulation of ABA in shoots of nutrient deficient plants was linked to a decrease in leaf turgor. Increased flow of ABA in the phloem apparently contributed to the accumulation of ABA in the apical part of the roots. Thus, partitioning of growth between roots and shoots of wheat plants limited in mineral nutrients appears to be modulated by accumulation of ABA in roots. This ABA may originate in the shoots, where its synthesis is stimulated by the loss of leaf turgor.


Asunto(s)
Ácido Abscísico/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Minerales , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Triticum/metabolismo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA