Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(28): 25487-25495, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483247

RESUMEN

Photoaffinity labeling followed by tandem mass spectrometry is an often used strategy to identify protein targets of small-molecule drugs or drug candidates, which, under ideal conditions, enables the identification of the actual drug binding site. In the case of bioactive peptides, however, identifying the distinct binding site is hampered because of complex fragmentation patterns during tandem mass spectrometry. We here report the development and use of small cleavable photoaffinity reagents that allow functionalization of bioactive peptides for light-induced covalent binding to their protein targets. Upon cleavage of the covalently linked peptide drug, a chemical remnant of a defined mass remains on the bound amino acid, which is then used to unambiguously identify the drug binding site. Applying our approach to known peptide-drug/protein pairs with reported crystal structures, such as the calmodulin-melittin interaction, we were able to validate the identified binding sites based on structural models. Overall, our cleavable photoaffinity labeling strategy represents a powerful tool to enable the identification of protein targets and specific binding sites of a wide variety of bioactive peptides in the future.

2.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36670993

RESUMEN

Reactive oxygen species (ROS) have been described to induce a broad range of redox-dependent signaling reactions in physiological conditions. Nevertheless, an excessive accumulation of ROS leads to oxidative stress, which was traditionally considered as detrimental for cells and organisms, due to the oxidative damage they cause to biomolecules. During ageing, elevated ROS levels result in the accumulation of damaged proteins, which may exhibit altered enzymatic function or physical properties (e.g., aggregation propensity). Emerging evidence also highlights the relationship between oxidative stress and age-related pathologies, such as protein misfolding-based neurodegenerative diseases (e.g., Parkinson's (PD), Alzheimer's (AD) and Huntington's (HD) diseases). In this review we aim to introduce the role of oxidative stress in physiology and pathology and then focus on the state-of-the-art techniques available to detect and quantify ROS and oxidized proteins in live cells and in vivo, providing a guide to those aiming to characterize the role of oxidative stress in ageing and neurodegenerative diseases. Lastly, we discuss recently published data on the role of oxidative stress in neurological disorders.

3.
Cell Death Differ ; 29(1): 230-245, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453119

RESUMEN

Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments. Bioinformatics-driven pathway analysis indicated that immunogenic treatments instigated a NF-κB/AP-1-inflammatory stress response, which dissociated from both cell death and UPR. This stress-induced inflammation was specifically abolished by the IRE1α-kinase inhibitor KIRA6. Supernatants from immunogenic chemotherapy and KIRA6 co-treated cancer cells were deprived of proinflammatory/chemoattractant factors and failed to mobilize neutrophils and induce dendritic cell maturation. Furthermore, KIRA6 significantly reduced the in vivo vaccination potential of dying cancer cells responding to immunogenic chemotherapy. Mechanistically, we found that the anti-inflammatory effect of KIRA6 was still effective in IRE1α-deficient cells, indicating a hitherto unknown off-target effector of this IRE1α-kinase inhibitor. Generation of a KIRA6-clickable photoaffinity probe, mass spectrometry, and co-immunoprecipitation analysis identified cytosolic HSP60 as a KIRA6 off-target in the IKK-driven NF-κB pathway. In sum, our study unravels that HSP60 is a KIRA6-inhibitable upstream regulator of the NF-κB/AP-1-inflammatory stress responses evoked by immunogenic treatments. It also urges caution when interpreting the anti-inflammatory action of IRE1α chemical inhibitors.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Humanos , Imidazoles , Muerte Celular Inmunogénica , Inflamación/metabolismo , Naftalenos , Pirazinas
4.
Chembiochem ; 22(13): 2206-2218, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33544409

RESUMEN

Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.


Asunto(s)
Etiquetas de Fotoafinidad/química , Proteínas Quinasas/química , Sitios de Unión , Humanos , Proteínas Quinasas/metabolismo
5.
Mol Omics ; 17(2): 197-209, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507200

RESUMEN

Covalent chemical probes are important tools in chemical biology. They range from post-translational modification (PTM)-derived metabolic probes, to activity-based probes and photoaffinity labels. Identification of the probe targets is often performed by tandem mass spectrometry-based proteomics methods. In the past fifteen years, cleavable linker technologies have been implemented in these workflows in order to identify probe targets with lower background and higher confidence. In addition, the linkers have enabled identification of modification sites. Overall, this has led to an increased knowledge of PTMs, enzyme function and drug action. This review gives an overview of the different types of cleavable linkers, and their benefits and limitations. Their applicability in target identification is also illustrated by several specific examples.


Asunto(s)
Etiquetas de Fotoafinidad , Procesamiento Proteico-Postraduccional/genética , Proteoma/genética , Proteómica/tendencias , Humanos , Espectrometría de Masas en Tándem
6.
ACS Chem Biol ; 15(12): 3106-3111, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33290055

RESUMEN

Inositol-requiring enzyme 1α (IRE1α) is one of three endoplasmic reticulum stress sensors. Upon activation of its kinase domain, IRE1α splices the mRNA substrate XBP1, which activates the unfolded protein response. IRE1α has emerged as a therapeutic target as its hyperactivation is implicated in various diseases. Kinase inhibiting RNase attenuator 6 (KIRA6) is an allosteric IRE1α inhibitor targeting the ATP binding pocket, resulting in effective blockage of the IRE1α-XBP1 pathway in mouse models of diabetes and pain. However, recent studies indicate that KIRA6 is not as selective as initially thought. Here, we developed a photoaffinity-based KIRA6 probe to reveal its selectivity. Surprisingly, the majority of off-targets that we identified were not protein kinases but mostly nucleotide-binding proteins. Furthermore, we found that the promiscuous off-target profile of KIRA6 is not cell-line-dependent. Overall, this study calls for caution when KIRA6 is used in IRE1α-targeted studies and illustrates the power of kinase photoaffinity probes.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Imidazoles/farmacología , Naftalenos/farmacología , Etiquetas de Fotoafinidad/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazinas/farmacología , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Proteómica , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...