Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(23): 12446-12451, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262018

RESUMEN

Generating or even retaining slow magnetic relaxation in surface immobilized single-molecule magnets (SMMs) from promising molecular precursors remains a great challenge. Illustrative examples are organolanthanide compounds that show promising SMM properties in molecular systems, though surface immobilization generally diminishes their magnetic performance. Here, we show how tailored Lewis acidic Al(III) sites on a silica surface enable generation of a material with SMM characteristics via chemisorption of (Cpttt)2DyCl ((Cpttt)- = 1,2,4-tri(tert-butyl)-cyclopentadienide). Detailed studies of this system and its diamagnetic Y analogue indicate that the interaction of the metal chloride with surface Al sites results in a change of the coordination sphere around the metal center inducing for the dysprosium-containing material slow magnetic relaxation up to 51 K with hysteresis up to 8 K and an effective energy barrier (Ueff) of 449 cm-1, the highest reported thus far for a supported SMM.

2.
JACS Au ; 2(11): 2460-2465, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36465533

RESUMEN

Advances in solid-state nuclear magnetic resonance (NMR) methods and hardware offer expanding opportunities for analysis of materials, interfaces, and surfaces. Here, we demonstrate the application of a very high magnetic field strength of 28.2 T and fast magic-angle-spinning rates (MAS, >40 kHz) to surface species relevant to catalysis. Specifically, we present as case studies the 1D and 2D solid-state NMR spectra of important catalyst and support materials, ranging from a well-defined silica-supported organometallic catalyst to dehydroxylated γ-alumina and zeolite solid acids. The high field and fast-MAS measurement conditions substantially improve spectral resolution and narrow NMR signals, which is particularly beneficial for solid-state 1D and 2D NMR analysis of 1H and quadrupolar nuclei such as 27Al at surfaces.

3.
J Am Chem Soc ; 143(14): 5438-5444, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33818083

RESUMEN

Single-molecule magnets (SMMs) hold promise for unmatched information storage density as well as for applications in quantum computing and spintronics. To date, the most successful SMMs have been organometallic lanthanide complexes. However, their surface immobilization, one of the requirements for device fabrication and commercial application, remains challenging due to the sensitivity of the magnetic properties to small changes in the electronic structure of the parent SMM. Thus, finding controlled approaches to SMM surface deposition is a timely challenge. In this contribution we apply the concept of isolobality to identify siloxides present at the surface of partially dehydroxylated silica as a suitable replacement for archetypal ligand architectures in organometallic SMMs. We demonstrate theoretically and experimentally that isolated siloxide anchoring sites not only enable successful immobilization but also lead to a 2 orders of magnitude increase in magnetization relaxation times.

4.
Chem Sci ; 10(23): 5906-5910, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31360395

RESUMEN

Treatment of MOF-5 with NbCl4(THF)2 in acetonitrile leads to incorporation of Nb(iv) centers in a fashion that diverges from the established cation metathesis reactivity of this iconic material. A combination of X-ray absorption spectroscopy analysis and reactivity studies altogether supported by density functional theory computational studies document an unprecedented binding mode for the Zn4O(O2C-)6 secondary building units (SBUs), which in Nb(iv)-MOF-5 function as κ 2-chelating ligands for NbCl4 moieties, with no exchange of Zn2+ observed. This unusual reactivity expands the portfolio of post-synthetic modification techniques available for MOFs, exemplified here by MOF-5, and underscores the diverse coordination environments offered by this and potentially other MOFs towards heterometal species.

5.
Inorg Chem ; 57(21): 13998-14004, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30354088

RESUMEN

Although X-ray absorption spectroscopy (XAS) has become an indispensable tool in characterization of solid-state materials, it is less of a staple in molecular chemistry of niobium. Scattering X-ray techniques remain relatively unexplored for the systematic study of molecular niobium compounds. Here, we use XAS to probe the niobium environment in commonly used Nb precursors in +V, +IV, and +III oxidation states. Apart from laying out the guidelines for identification of niobium oxidation states, we correlate our data with density functional theory models to provide further structural insight. Of particular note, we are able to shed light on the nature of the commonly used and catalytically competent NbCl3(DME), which had not been previously characterized structurally despite its prevalence in Nb chemistry.

6.
J Am Chem Soc ; 140(22): 6956-6960, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29734809

RESUMEN

The zirconium nodes of the metal-organic framework (MOF) known as NU-1000 serve as competent supports for the activation of methyltrioxorhenium (MTO) toward olefin metathesis. Itself inactive for olefin metathesis, MTO becomes an active catalyst only when immobilized on the strongly acidic Lewis acid sites of dehydrated NU-1000. Uptake of MTO at the dehydrated secondary building units (SBUs) occurs rapidly and quantitatively to produce a catalyst active in both gas- and liquid-phase processes. These results demonstrate for the first time the utility of MOF SBUs for olefin metathesis, an academically and industrially relevant transformation.

7.
Angew Chem Int Ed Engl ; 57(27): 8135-8139, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29688609

RESUMEN

Vanadium catalysts offer unique selectivity in olefin polymerization, yet are underutilized industrially owing to their poor stability and productivity. Reported here is the immobilization of vanadium by cation exchange in MFU-4l, thus providing a metal-organic framework (MOF) with vanadium in a molecule-like coordination environment. This material forms a single-site heterogeneous catalyst with methylaluminoxane and provides polyethylene with low polydispersity (PDI≈3) and the highest activity (up to 148 000 h-1 ) reported for a MOF-based polymerization catalyst. Furthermore, polyethylene is obtained as a free-flowing powder as desired industrially. Finally, the catalyst shows good structural integrity and retains polymerization activity for over 24 hours, both promising attributes for the commercialization of vanadium-based polyolefins.

8.
ACS Cent Sci ; 3(6): 554-563, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28691066

RESUMEN

Metal-organic frameworks (MOFs) allow compositional and structural diversity beyond conventional solid-state materials. Continued interest in the field is justified by potential applications of exceptional breadth, ranging from gas storage and separation, which takes advantage of the inherent pores and their volume, to electronic applications, which requires precise control of electronic structure. In this Outlook we present some of the pertinent challenges that MOFs face in their conventional implementations, as well as opportunities in less traditional areas. Here the aim is to discuss select design concepts and future research goals that emphasize nuances relevant to this class of materials as a whole. Particular emphasis is placed on synthetic aspects, as they influence the potential for MOFs in gas separation, electrical conductivity, and catalytic applications.

9.
J Am Chem Soc ; 139(16): 5992-5997, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28347141

RESUMEN

Extreme toxicity, corrosiveness, and volatility pose serious challenges for the safe storage and transportation of elemental chlorine and bromine, which play critical roles in the chemical industry. Solid materials capable of forming stable nonvolatile compounds upon reaction with elemental halogens may partially mitigate these challenges by allowing safe halogen release on demand. Here we demonstrate that elemental halogens quantitatively oxidize coordinatively unsaturated Co(II) ions in a robust azolate metal-organic framework (MOF) to produce stable and safe-to-handle Co(III) materials featuring terminal Co(III)-halogen bonds. Thermal treatment of the oxidized MOF causes homolytic cleavage of the Co(III)-halogen bonds, reduction to Co(II), and concomitant release of elemental halogens. The reversible chemical storage and thermal release of elemental halogens occur with no significant losses of structural integrity, as the parent cobaltous MOF retains its crystallinity and porosity even after three oxidation/reduction cycles. These results highlight a material operating via redox mechanism that may find utility in the storage and capture of other noxious and corrosive gases.

10.
Beilstein J Org Chem ; 8: 259-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22423293

RESUMEN

A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the S(N)Ar reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA