Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 34(11-12): 819-831, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32354834

RESUMEN

Condensin mediates chromosome condensation, which is essential for proper chromosome segregation during mitosis. Prior to anaphase of budding yeast, the ribosomal DNA (RDN) condenses to a thin loop that is distinct from the rest of the chromosomes. We provide evidence that the establishment and maintenance of this RDN condensation requires the regulation of condensin by Cdc5p (polo) kinase. We show that Cdc5p is recruited to the site of condensin binding in the RDN by cohesin, a complex related to condensin. Cdc5p and cohesin prevent condensin from misfolding the RDN into an irreversibly decondensed state. From these and other observations, we propose that the spatial regulation of Cdc5p by cohesin modulates condensin activity to ensure proper RDN folding into a thin loop. This mechanism may be evolutionarily conserved, promoting the thinly condensed constrictions that occur at centromeres and RDN of mitotic chromosomes in plants and animals.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Unión Proteica , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
2.
Elife ; 82019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31162048

RESUMEN

Cohesin mediates higher order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesin by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose that this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Proteínas de Ciclo Celular/química , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/química , Complejos Multiproteicos/química , Mutación/genética , Dominios Proteicos , Subunidades de Proteína/química , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Cohesinas
3.
Cell Rep ; 15(5): 988-998, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117417

RESUMEN

Cohesin is essential for the hierarchical organization of the eukaryotic genome and plays key roles in many aspects of chromosome biology. The conformation of cohesin bound to DNA remains poorly defined, leaving crucial gaps in our understanding of how cohesin fulfills its biological functions. Here, we use single-molecule microscopy to directly observe the dynamic and functional characteristics of cohesin bound to DNA. We show that cohesin can undergo rapid one-dimensional (1D) diffusion along DNA, but individual nucleosomes, nucleosome arrays, and other protein obstacles significantly restrict its mobility. Furthermore, we demonstrate that DNA motor proteins can readily push cohesin along DNA, but they cannot pass through the interior of the cohesin ring. Together, our results reveal that DNA-bound cohesin has a central pore that is substantially smaller than anticipated. These findings have direct implications for understanding how cohesin and other SMC proteins interact with and distribute along chromatin.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagen Individual de Molécula/métodos , Secuencia Rica en At/genética , Secuencia de Bases , Difusión , Modelos Biológicos , Proteínas Motoras Moleculares/metabolismo , Nucleosomas/metabolismo , Porosidad , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Schizosaccharomyces/metabolismo , Cohesinas
4.
Curr Biol ; 24(23): 2758-66, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25456447

RESUMEN

BACKGROUND: Diverse organisms across taxa are desiccation tolerant, capable of surviving extreme water loss. Remarkably, desiccation tolerant organisms can survive years without water. However, the molecular mechanisms underlying this rare trait are poorly understood. RESULTS: Here, using Saccharomyces cerevisiae, we show that intracellular trehalose is essential for survival to long-term desiccation. The time frame for maintaining long-term desiccation tolerance consists of a balance of trehalose stockpiled prior to desiccation and trehalose degradation by trehalases in desiccated cells. The activity of trehalases in desiccated cell reveals the stunning ability of cells to retain enzymatic activity while desiccated. Interestingly, the protein chaperone Hsp104 compensates for loss of trehalose during short-term, but not long-term, desiccation. We show that desiccation induces protein misfolding/aggregation of cytoplasmic and membrane proteins using luciferase and prion reporters. We demonstrate that trehalose, but not Hsp104, mitigates the aggregation of both cytoplasmic and membrane prions. We propose that desiccated cells initially accumulate both protein and chemical chaperones, like Hsp104 and trehalose, respectively. As desiccation extends, the activities of the protein chaperones are lost because of their complexity and requirement for energy, leaving trehalose as the major protector against the aggregation of cytoplasmic and membrane proteins. CONCLUSIONS: Our results suggest that trehalose is both a more stable and more versatile protectant than protein chaperones, explaining its important role in desiccation tolerance and emphasizing the translational potential of small chemical chaperones as stress effectors.


Asunto(s)
Saccharomyces cerevisiae/fisiología , Trehalosa/metabolismo , Deshidratación , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Yeast ; 30(12): 501-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24185677

RESUMEN

Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodos , Saccharomyces cerevisiae/citología , Sensibilidad y Especificidad , Factores de Tiempo
6.
Mol Biol Cell ; 24(2): 115-28, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23171550

RESUMEN

Tolerance to desiccation in cultures of Saccharomyces cerevisiae is inducible; only one in a million cells from an exponential culture survive desiccation compared with one in five cells in stationary phase. Here we exploit the desiccation sensitivity of exponentially dividing cells to understand the stresses imposed by desiccation and their stress response pathways. We found that induction of desiccation tolerance is cell autonomous and that there is an inverse correlation between desiccation tolerance and growth rate in glucose-, ammonia-, or phosphate-limited continuous cultures. A transient heat shock induces a 5000-fold increase in desiccation tolerance, whereas hyper-ionic, -reductive, -oxidative, or -osmotic stress induced much less. Furthermore, we provide evidence that the Sch9p-regulated branch of the TOR and Ras-cAMP pathway inhibits desiccation tolerance by inhibiting the stress response transcription factors Gis1p, Msn2p, and Msn4p and by activating Sfp1p, a ribosome biogenesis transcription factor. Among 41 mutants defective in ribosome biogenesis, a subset defective in 60S showed a dramatic increase in desiccation tolerance independent of growth rate. We suggest that reduction of a specific intermediate in 60S biogenesis, resulting from conditions such as heat shock and nutrient deprivation, increases desiccation tolerance.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Adaptación Fisiológica , Medios de Cultivo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Deshidratación , Técnicas de Inactivación de Genes , Fosfatidilinositol 3-Quinasas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Sirolimus/farmacología , Estrés Fisiológico , Factores de Transcripción/antagonistas & inhibidores , Proteínas ras/genética
7.
Genetics ; 189(2): 507-19, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21840858

RESUMEN

Desiccation tolerance, the ability to survive nearly total dehydration, is a rare strategy for survival and reproduction observed in all taxa. However, the mechanism and regulation of this phenomenon are poorly understood. Correlations between desiccation tolerance and potential effectors have been reported in many species, but their physiological significance has not been established in vivo. Although the budding yeast Saccharomyces cerevisiae exhibits extreme desiccation tolerance, its usefulness has been hampered by an inability to reduce tolerance more than a few fold by physiological or genetic perturbations. Here we report that fewer than one in a million yeast cells from low-density logarithmic cultures survive desiccation, while 20-40% of cells from saturated cultures survive. Using this greatly expanded metric, we show that mutants defective in trehalose biosynthesis, hydrophilins, responses to hyperosmolarity, and hypersalinity, reactive oxygen species (ROS) scavenging and DNA damage repair nevertheless retain wild-type levels of desiccation tolerance, suggesting that this trait involves a unique constellation of stress factors. A genome-wide screen for mutants that render stationary cells as sensitive as log phase cells identifies only mutations that block respiration. Respiration as a prerequisite for acquiring desiccation tolerance is corroborated by respiration inhibition and by growth on nonfermentable carbon sources. Suppressors bypassing the respiration requirement for desiccation tolerance reveal at least two pathways, one of which, involving the Mediator transcription complex, is associated with the shift from fermentative to respiratory metabolism. Further study of these regulators and their targets should provide important clues to the sensors and effectors of desiccation tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Daño del ADN , Desecación , Genes Reguladores/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Mutación , Concentración Osmolar , Filogenia , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Trehalosa/biosíntesis , Agua/metabolismo , Agua/farmacología , Levaduras/clasificación , Levaduras/genética , Levaduras/fisiología
8.
Nucleic Acids Res ; 37(18): 6126-34, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19692582

RESUMEN

Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.


Asunto(s)
Acetiltransferasas/química , Cromátides/enzimología , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Dedos de Zinc , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Daño del ADN , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Annu Rev Cell Dev Biol ; 24: 105-29, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18616427

RESUMEN

In eukaryotes, the process of sister chromatid cohesion holds the two sister chromatids (the replicated chromosomes) together from DNA replication to the onset of chromosome segregation. Cohesion is mediated by cohesin, a four-subunit SMC (structural maintenance of chromosome) complex. Cohesin and cohesion are required for proper chromosome segregation, DNA repair, and gene expression. To carry out these functions, cohesion is regulated by elaborate mechanisms involving a growing list of cohesin auxiliary factors. These factors control the timing and position of cohesin binding to chromatin, activate chromatin-bound cohesin to become cohesive, and orchestrate the orderly dissolution of cohesion. The 45-nm ringlike architecture of soluble cohesin is compatible with dramatically different mechanisms for both chromatin binding and cohesion generation. Solving the mechanism of cohesion and its complex regulation presents significant challenges but offers the potential to provide important insights into higher-order chromosome organization and chromosome biology.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides/metabolismo , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Cohesinas
11.
Science ; 321(5888): 566-9, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18653894

RESUMEN

Chromosome segregation, transcriptional regulation, and repair of DNA double-strand breaks require the cohesin protein complex. Cohesin holds the replicated chromosomes (sister chromatids) together to mediate sister chromatid cohesion. The mechanism of how cohesion is established is unknown. We found that in budding yeast, the head domain of the Smc3p subunit of cohesin is acetylated by the Eco1p acetyltransferase at two evolutionarily conserved residues, promoting the chromatin-bound cohesin to tether sister chromatids. Smc3p acetylation is induced in S phase after the chromatin loading of cohesin and is suppressed in G(1) and G(2)/M. Smc3 head acetylation and its cell cycle regulation provide important insights into the biology and mechanism of cohesion establishment.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromátides/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/fisiología , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Acetilación , Acetiltransferasas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , División Celular , Proteoglicanos Tipo Condroitín Sulfato/química , Proteoglicanos Tipo Condroitín Sulfato/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Fase G1 , Fase G2 , Inmunoprecipitación , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Estructura Terciaria de Proteína , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
PLoS Biol ; 2(9): E259, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15309048

RESUMEN

In eukaryotic cells, cohesin holds sister chromatids together until they separate into daughter cells during mitosis. We have used chromatin immunoprecipitation coupled with microarray analysis (ChIP chip) to produce a genome-wide description of cohesin binding to meiotic and mitotic chromosomes of Saccharomyces cerevisiae. A computer program, PeakFinder, enables flexible, automated identification and annotation of cohesin binding peaks in ChIP chip data. Cohesin sites are highly conserved in meiosis and mitosis, suggesting that chromosomes share a common underlying structure during different developmental programs. These sites occur with a semiperiodic spacing of 11 kb that correlates with AT content. The number of sites correlates with chromosome size; however, binding to neighboring sites does not appear to be cooperative. We observed a very strong correlation between cohesin sites and regions between convergent transcription units. The apparent incompatibility between transcription and cohesin binding exists in both meiosis and mitosis. Further experiments reveal that transcript elongation into a cohesin-binding site removes cohesin. A negative correlation between cohesin sites and meiotic recombination sites suggests meiotic exchange is sensitive to the chromosome structure provided by cohesin. The genome-wide view of mitotic and meiotic cohesin binding provides an important framework for the exploration of cohesins and cohesion in other genomes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mapeo Cromosómico , Proteínas Fúngicas/genética , Técnicas Genéticas , Genoma Fúngico , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona , Cromosomas Artificiales de Levadura , Cromosomas Fúngicos/metabolismo , Biología Computacional , ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Galactosa/metabolismo , Meiosis , Mitosis , Modelos Genéticos , Datos de Secuencia Molecular , Nocodazol/farmacología , Proteínas Nucleares/química , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Unión Proteica , Programas Informáticos , Factores de Tiempo , Transcripción Genética , Cohesinas
13.
J Cell Biol ; 163(5): 937-47, 2003 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-14662740

RESUMEN

Condensin is an evolutionarily conserved protein complex that helps mediate chromosome condensation and segregation in mitotic cells. Here, we show that condensin has two activities that contribute to meiotic chromosome condensation in Saccharomyces cerevisiae. One activity, common to mitosis, helps mediate axial length compaction. A second activity promotes chromosome individualization with the help of Red1 and Hop1, two meiotic specific components of axial elements. Like Red1 and Hop1, condensin is also required for efficient homologue pairing and proper processing of double strand breaks. Consistent with these functional links condensin is necessary for proper chromosomal localization of Red1 and Hop1 and the subsequent assembly of the synaptonemal complex. Finally, condensin has a Red1/Hop1-independent role in the resolution of recombination-dependent linkages between homologues in meiosis I. The existence of distinct meiotic activities of condensin (axial compaction, individualization, and resolution of recombination-dependent links) provides an important framework to understand condensin's role in both meiotic and mitotic chromosome structure and function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/fisiología , Recombinación Genética , Saccharomyces cerevisiae/genética , Complejo Sinaptonémico/metabolismo , Núcleo Celular/metabolismo , ADN de Hongos/metabolismo , Complejos Multiproteicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...