Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2314606121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446847

RESUMEN

Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.


Asunto(s)
Virus Gigantes , Estramenopilos , Virosis , Humanos , Virófagos , Virus Gigantes/genética , Estramenopilos/genética , Antivirales
2.
Proc Natl Acad Sci U S A ; 120(16): e2300465120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036967

RESUMEN

Eukaryotic genomes contain a variety of endogenous viral elements (EVEs), which are mostly derived from RNA and ssDNA viruses that are no longer functional and are considered to be "genomic fossils." Genomic surveys of EVEs, however, are strongly biased toward animals and plants, whereas protists, which represent the majority of eukaryotic diversity, remain poorly represented. Here, we show that protist genomes harbor tens to thousands of diverse, ~14 to 40 kbp long dsDNA viruses. These EVEs, composed of virophages, Polinton-like viruses, and related entities, have remained hitherto hidden owing to poor sequence conservation between virus groups and their repetitive nature that precluded accurate short-read assembly. We show that long-read sequencing technology is ideal for resolving virus insertions. Many protist EVEs appear intact, and most encode integrases, which suggests that they have actively colonized hosts across the tree of eukaryotes. We also found evidence for gene expression in host transcriptomes and that closely related virophage and Polinton-like virus genomes are abundant in viral metagenomes, indicating that many EVEs are probably functional viruses.


Asunto(s)
Eucariontes , Virus , Animales , Eucariontes/genética , Virus ADN/genética , Virus/genética , Virófagos , Genoma Viral/genética , Filogenia
3.
Viruses ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960774

RESUMEN

The chicken Tva cell surface protein, a member of the low-density lipoprotein receptor family, has been identified as an entry receptor for avian leukosis virus of classic subgroup A and newly emerging subgroup K. Because both viruses represent an important concern for the poultry industry, we introduced a frame-shifting deletion into the chicken tva locus with the aim of knocking-out Tva expression and creating a virus-resistant chicken line. The tva knock-out was prepared by CRISPR/Cas9 gene editing in chicken primordial germ cells and orthotopic transplantation of edited cells into the testes of sterilized recipient roosters. The resulting tva -/- chickens tested fully resistant to avian leukosis virus subgroups A and K, both in in vitro and in vivo assays, in contrast to their susceptible tva +/+ and tva +/- siblings. We also found a specific disorder of the cobalamin/vitamin B12 metabolism in the tva knock-out chickens, which is in accordance with the recently recognized physiological function of Tva as a receptor for cobalamin in complex with transcobalamin transporter. Last but not least, we bring a new example of the de novo resistance created by CRISPR/Cas9 editing of pathogen dependence genes in farm animals and, furthermore, a new example of gene editing in chicken.


Asunto(s)
Virus de la Leucosis Aviar/fisiología , Proteínas Aviares/fisiología , Pollos/virología , Receptores Virales/fisiología , Vitamina B 12/metabolismo , Animales , Virus de la Leucosis Aviar/clasificación , Proteínas Aviares/genética , Embrión de Pollo , Femenino , Mutación del Sistema de Lectura , Edición Génica , Técnicas de Inactivación de Genes , Masculino , Ácido Metilmalónico/sangre , Receptores Virales/genética
4.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238588

RESUMEN

Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.


Asunto(s)
Proteínas Aviares/inmunología , Virus del Sarcoma Aviar/inmunología , Antígeno 2 del Estroma de la Médula Ósea/inmunología , Evolución Molecular , Galliformes/inmunología , Sarcoma Aviar/inmunología , Secuencia de Aminoácidos , Animales , Proteínas Aviares/genética , Virus del Sarcoma Aviar/genética , Virus del Sarcoma Aviar/patogenicidad , Antígeno 2 del Estroma de la Médula Ósea/genética , Línea Celular , Fibroblastos/inmunología , Fibroblastos/virología , Galliformes/genética , Galliformes/virología , Regulación de la Expresión Génica , Células HEK293 , VIH-1/genética , VIH-1/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Passeriformes/genética , Passeriformes/inmunología , Passeriformes/virología , Sarcoma Aviar/genética , Sarcoma Aviar/virología , Selección Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Liberación del Virus , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
5.
Proc Natl Acad Sci U S A ; 117(4): 2108-2112, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31964810

RESUMEN

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.


Asunto(s)
Virus de la Leucosis Aviar/genética , Leucosis Aviar/inmunología , Proteínas Aviares/genética , Enfermedades de las Aves de Corral/inmunología , Intercambiador 1 de Sodio-Hidrógeno/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/virología , Leucosis Aviar/genética , Leucosis Aviar/virología , Virus de la Leucosis Aviar/clasificación , Virus de la Leucosis Aviar/fisiología , Proteínas Aviares/inmunología , Sistemas CRISPR-Cas , Pollos , Resistencia a la Enfermedad , Femenino , Edición Génica , Masculino , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/virología , Intercambiador 1 de Sodio-Hidrógeno/inmunología
6.
Ann N Y Acad Sci ; 1447(1): 97-109, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31162694

RESUMEN

DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.


Asunto(s)
Genoma Viral/fisiología , Interacciones Huésped-Parásitos/fisiología , Virófagos/genética , Virófagos/metabolismo , Animales , Humanos
7.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31217247

RESUMEN

Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which, in sequence analyses, cluster separately from the well-characterized subgroups A, B, C, D, E, and J. However, it remains unclear whether ALV-K represents an independent ALV subgroup with regard to receptor usage, host range, and superinfection interference. In the present study, we examined the host range of the Chinese infectious isolate JS11C1, an ALV-K prototype, and we found substantial overlap of species that were either resistant or susceptible to ALV-A and JS11C1. Ectopic expression of the chicken tva gene in mammalian cells conferred susceptibility to JS11C1, while genetic ablation of the tva gene rendered chicken DF-1 cells resistant to infection by JS11C1. Thus, tva expression is both sufficient and necessary for JS11C1 entry. Receptor sharing was also manifested in superinfection interference, with preinfection of cells with ALV-A, but not ALV-B or ALV-J, blocking subsequent JS11C1 infection. Finally, direct binding of JS11C1 and Tva was demonstrated by preincubation of the virus with soluble Tva, which substantially decreased viral infectivity in susceptible chicken cells. Collectively, these findings indicate that JS11C1 represents a new and bona fide ALV subgroup that utilizes Tva for cell entry and binds to a site other than that for ALV-A.IMPORTANCE ALV consists of several subgroups that are particularly characterized by their receptor usage, which subsequently dictates the host range and tropism of the virus. A few newly emerging and highly pathogenic Chinese ALV strains have recently been suggested to be an independent subgroup, ALV-K, based solely on their genomic sequences. Here, we performed a series of experiments with the ALV-K strain JS11C1, which showed its dependence on the Tva cell surface receptor. Due to the sharing of this receptor with ALV-A, both subgroups were able to interfere with superinfection. Because ALV-K could become an important pathogen and a significant threat to the poultry industry in Asia, the identification of a specific receptor could help in the breeding of resistant chicken lines with receptor variants with decreased susceptibility to the virus.


Asunto(s)
Virus de la Leucosis Aviar/patogenicidad , Leucosis Aviar/genética , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Animales , Leucosis Aviar/metabolismo , Leucosis Aviar/virología , Virus de la Leucosis Aviar/clasificación , Virus de la Leucosis Aviar/fisiología , Línea Celular , Pollos , Susceptibilidad a Enfermedades , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/virología , Mesocricetus , Especificidad de la Especie , Internalización del Virus
8.
Viruses ; 10(11)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400152

RESUMEN

Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry, utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens. We used CRISPR/Cas9 genome editing tools to introduce frame-shifting indel mutations into tva, tvc, and tvj loci encoding receptors for the A, C, and J ALV subgroups, respectively. For all three loci, the homozygous frame-shifting indels generating premature stop codons induced phenotypes which were fully resistant to the virus of respective subgroup. In the tvj locus, we also obtained in-frame deletions corroborating the importance of W38 and the four amino-acids preceding it. We demonstrate that CRISPR/Cas9-mediated knock-out or the fine editing of ALV receptor genes might be the first step in the development of virus-resistant chickens.


Asunto(s)
Virus de la Leucosis Aviar/fisiología , Leucosis Aviar/genética , Leucosis Aviar/virología , Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Edición Génica , Receptores Virales/genética , Animales , Secuencia de Bases , Línea Celular , Pollos , Genes Virales , Técnicas Genéticas , Vectores Genéticos/genética , ARN Guía de Kinetoplastida , Receptores Virales/metabolismo
9.
Sci Rep ; 7(1): 14246, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079843

RESUMEN

The ongoing progress in primordial germ cell derivation and cultivation is opening new ways in reproductive biotechnology. This study tested whether functional sperm cells can be matured from genetically manipulated primordial germ cells after transplantation in adult testes and used to restore fertility. We show that spermatogenesis can be restored after mCherry-expressing or GFP-expressing primordial germ cells are transplantated into the testes of sterilized G0 roosters and that mCherry-positive or GFP-positive non-chimeric transgenic G1 offspring can be efficiently produced. Compared with the existing approaches to primordial germ cell replacement, this new technique eliminates the germ line chimerism of G0 roosters and is, therefore, faster, more efficient and requires fewer animals. Furthermore, this is the only animal model, where the fate of primordial germ cells in infertile recipients can be studied.


Asunto(s)
Trasplante de Células , Pollos/genética , Fertilidad , Técnicas de Transferencia de Gen , Espermatozoides/citología , Testículo/citología , Testículo/fisiología , Animales , Pollos/fisiología , Masculino , Fenotipo , Espermatogénesis/genética , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...