Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; 26(1-2): 105230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37734535

RESUMEN

The Candida albicans population displays high genetic diversity illustrated by 18-well differentiated genetic clusters. Cluster 13, also known as Candida africana, is an outlying cluster and includes strains first described as atypical C. albicans isolates of vaginal origin, showing apparent tropism for the female genital tract. In our study, we combined in vitro, and in vivo models to explore the colonization and pathogenic potential of C. africana. We report that C. africana has similar fitness to C. albicans when it comes to colonization of the oral and vaginal mucosa, however it has decreased fitness in gastro-intestinal colonization and systemic infection. Interestingly, despite high population homogeneity, our in vitro data highlighted for the first time a variability in terms of growth rate, biofilm formation and filamentation properties between C. africana strains. Overall, our data lays the foundations for exploring specific features of C. africana that might contribute to its apparent niche restriction.


Asunto(s)
Candidiasis Vulvovaginal , Femenino , Humanos , Candidiasis Vulvovaginal/epidemiología , Antifúngicos , Candida/genética , Candida albicans/genética
2.
Cells ; 10(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922837

RESUMEN

Interactions between neoplastic and immune cells taking place in tumors drive cancer regulatory mechanisms both in humans and animals. IFN-λ, a potent antiviral factor, is also secreted in the tumor; however, its role in tumor development is still unclear. In our study, we investigate the influence of IFN-λ on the canine mammary tumor (CMT) cell survival and their metastatic potential in vitro. First, we examined, by Western blot, the expression of the IFN-λ receptor complex in three CMT cell lines (P114, CMT-U27 and CMT-U309). We showed that only two cell lines (P114 and CMT-U27) express both (IL-28RA and IL-10Rb) receptor subunits and respond to IFN-λ treatment by STAT phosphorylation and the expression of interferon-stimulated genes. Using MTT, crystal violet and annexin-V assays, we showed a minimal role of IFN-λ in CMT viability. However, IFN-λ administration had a contradictory effect on cell migration in the scratch test, namely, it increased P114 and decreased CMT-U27 motility. Moreover, we demonstrated that this process is related to the expression of extracellular matrix metalloproteinases and their inhibitors; furthermore, it is independent of Akt and ERK signaling pathways. To conclude, we showed that IFN-λ activity is reliant on the expression of two receptor subunits and tumor type, but further investigations are needed.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interferones/farmacología , Neoplasias Mamarias Animales/patología , Inhibidores de la Metaloproteinasa de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Receptores de Interferón/metabolismo , Receptores de Interleucina-10/metabolismo , Animales , Antineoplásicos/farmacología , Perros , Femenino , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/metabolismo , Metaloproteinasas de la Matriz/genética , Receptores de Interferón/genética , Receptores de Interleucina-10/genética
3.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804707

RESUMEN

TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.


Asunto(s)
Expresión Génica , Leucocitos Mononucleares/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Capsaicina/metabolismo , Células Cultivadas , Perros , Familia de Multigenes , Técnicas de Placa-Clamp , Filogenia , Temperatura
4.
FEMS Microbiol Rev ; 45(3)2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232448

RESUMEN

Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.


Asunto(s)
Candidiasis/inmunología , Candidiasis/microbiología , Interacciones Microbiota-Huesped/fisiología , Interacciones Microbianas/fisiología , Candida albicans/inmunología , Candida albicans/patogenicidad , Humanos
5.
Front Oncol ; 9: 1087, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681615

RESUMEN

Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...