Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
EMBnet J ; 292024.
Artículo en Inglés | MEDLINE | ID: mdl-38845752

RESUMEN

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.

2.
Genes (Basel) ; 15(5)2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790158

RESUMEN

The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.


Asunto(s)
CADASIL , Enfermedades Neurodegenerativas , Polimorfismo de Nucleótido Simple , Receptores Notch , Humanos , CADASIL/genética , CADASIL/metabolismo , CADASIL/patología , Receptores Notch/metabolismo , Receptores Notch/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mutación , Transducción de Señal , Receptor Notch3/genética , Receptor Notch3/metabolismo
3.
Nat Commun ; 15(1): 4248, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762584

RESUMEN

The naked mole-rat (Heterocephalus glaber) is a long-lived rodent species showing resistance to the development of cancer. Although naked mole-rats have been reported to lack natural killer (NK) cells, γδ T cell-based immunity has been suggested in this species, which could represent an important arm of the immune system for antitumor responses. Here, we investigate the biology of these unconventional T cells in peripheral tissues (blood, spleen) and thymus of the naked mole-rat at different ages by TCR repertoire profiling and single-cell gene expression analysis. Using our own TCR annotation in the naked mole-rat genome, we report that the γδ TCR repertoire is dominated by a public invariant Vγ4-2/Vδ1-4 TCR, containing the complementary-determining-region-3 (CDR3)γ CTYWDSNYAKKLF / CDR3δ CALWELRTGGITAQLVF that are likely generated by short-homology-repeat-driven DNA rearrangements. This invariant TCR is specifically found in γδ T cells expressing genes associated with NK cytotoxicity and is generated in both the thoracic and cervical thymus of the naked mole-rat until adult life. Our results indicate that invariant Vγ4-2/Vδ1-4 NK-like effector T cells in the naked mole-rat can contribute to tumor immunosurveillance by γδ TCR-mediated recognition of a common molecular signal.


Asunto(s)
Ratas Topo , Receptores de Antígenos de Linfocitos T gamma-delta , Timo , Animales , Ratas Topo/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo/inmunología , Timo/citología , Células Asesinas Naturales/inmunología , Bazo/inmunología , Regiones Determinantes de Complementariedad/genética , Células T Asesinas Naturales/inmunología
5.
Vaccines (Basel) ; 11(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38140161

RESUMEN

BACKGROUND: Myasthenia Gravis (MG) is a rare autoimmune disease presenting with auto-antibodies that affect the neuromuscular junction. In addition to symptomatic treatment options, novel therapeutics include monoclonal antibodies (mAbs). IMGT®, the international ImMunoGeneTics information system®, extends the characterization of therapeutic antibodies with a systematic description of their mechanisms of action (MOA) and makes them available through its database for mAbs and fusion proteins, IMGT/mAb-DB. METHODS: Using available literature data combined with amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, biocuration allowed us to define in a standardized way descriptions of MOAs of mAbs that target molecules towards MG treatment. RESULTS: New therapeutic targets include FcRn and molecules such as CD38, CD40, CD19, MS4A1, and interleukin-6 receptor. A standardized graphical representation of the MOAs of selected mAbs was created and integrated within IMGT/mAb-DB. The main mechanisms involved in these mAbs are either blocking or neutralizing. Therapies directed to B cell depletion and plasma cells have a blocking MOA with an immunosuppressant effect along with Fc-effector function (MS4A1, CD38) or FcγRIIb engager effect (CD19). Monoclonal antibodies targeting the complement also have a blocking MOA with a complement inhibitor effect, and treatments targeting T cells have a blocking MOA with an immunosuppressant effect (CD40) and Fc-effector function (IL6R). On the other hand, FcRn antagonists present a neutralizing MOA with an FcRn inhibitor effect. CONCLUSION: The MOA of each new mAb needs to be considered in association with the immunopathogenesis of each of the subtypes of MG in order to integrate the new mAbs as a viable and safe option in the therapy decision process. In IMGT/mAb-DB, mAbs for MG are characterized by their sequence, domains, and chains, and their MOA is described.

6.
Front Immunol ; 14: 1129323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215135

RESUMEN

Background: Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods: In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results: A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion: In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Humanos , Anticuerpos Monoclonales/uso terapéutico , Receptores de IgG , Bases de Datos de Proteínas , Inmunoterapia
7.
Leukemia ; 36(8): 1961-1968, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35614318

RESUMEN

The somatic hypermutation (SHM) status of the clonotypic immunoglobulin heavy variable (IGHV) gene is a critical biomarker for assessing the prognosis of patients with chronic lymphocytic leukemia (CLL). Importantly, independent studies have documented that IGHV SHM status is also a predictor of responses to therapy, including both chemoimmunotherapy (CIT) and novel, targeted agents. Moreover, immunogenetic analysis in CLL has revealed that different patients may express (quasi)identical, stereotyped B cell receptor immunoglobulin (BcR IG) and are classified into subsets based on this common feature. Patients in certain stereotyped subsets display consistent biology, clinical presentation, and outcome that are distinct from other patients, even with concordant IGHV gene SHM status. All of the above highlights the relevance of immunogenetic analysis in CLL, which is considered a cornerstone for accurate risk stratification and clinical decision making. Recommendations for robust immunogenetic analysis exist thanks to dedicated efforts by ERIC, the European Research Initiative on CLL, covering all test phases, from the pre-analytical and analytical to the post-analytical, pertaining to the analysis, interpretation, and reporting of the findings. That said, these recommendations apply to Sanger sequencing, which is increasingly being superseded by next generation sequencing (NGS), further underscoring the need for an update. Here, we present an overview of the clinical utility of immunogenetics in CLL and update our analytical recommendations with the aim to assist in the refined management of patients with CLL.


Asunto(s)
Genes de Inmunoglobulinas , Leucemia Linfocítica Crónica de Células B , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Receptores de Antígenos de Linfocitos B/genética
8.
Methods Mol Biol ; 2453: 477-531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35622340

RESUMEN

The variable domains (V-DOMAIN) of the antigen receptors, immunoglobulins (IG) or antibodies and T cell receptors (TR), which specifically recognize the antigens show a huge diversity in their sequences. This diversity results from the complex mechanisms involved in the synthesis of these domains at the DNA level (rearrangements of the variable (V), diversity (D), and joining (J) genes; N-diversity; and, for the IG, somatic hypermutations). The recognition of V, D, and J as "genes" and their entry in databases mark the creation of IMGT by Marie-Paule Lefranc, and the origin of immunoinformatics in 1989. For 30 years, IMGT®, the international ImMunoGeneTics information system® http://www.imgt.org , has implemented databases and developed tools for IG and TR immunoinformatics, based on the IMGT Scientific chart rules and IMGT-ONTOLOGY concepts and axioms, and more particularly, the princeps ones: IMGT genes and alleles (CLASSIFICATION axiom) and the IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION axiom). This chapter describes the online tools for the characterization and annotation of the expressed V-DOMAIN sequences: (a) IMGT/V-QUEST analyzes in detail IG and TR rearranged nucleotide sequences, (b) IMGT/HighV-QUEST is its high throughput version, which includes a module for the identification of IMGT clonotypes and generates immunoprofiles of expressed V, D, and J genes and alleles, (c) IMGT/StatClonotype performs the pairwise comparison of IMGT/HighV-QUEST immunoprofiles, (d) IMGT/DomainGapAlign analyzes amino acid sequences and is frequently used in antibody engineering and humanization, and (e) IMGT/Collier-de-Perles provides two-dimensional (2D) graphical representations of V-DOMAIN, bridging the gap between sequences and 3D structures. These IMGT® tools are widely used in repertoire analyses of the adaptive immune responses in normal and pathological situations and in the design of engineered IG and TR for therapeutic applications.


Asunto(s)
Biología Computacional , Inmunogenética , Secuencia de Aminoácidos , Anticuerpos/genética , Biología Computacional/métodos , Inmunogenética/métodos , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética
9.
Vaccines (Basel) ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35335026

RESUMEN

The adaptive immune system, along with the innate immune system, are the two main biological processes that protect an organism from pathogens. The adaptive immune system is characterized by the specificity and extreme diversity of its antigen receptors. These antigen receptors are the immunoglobulins (IG) or antibodies of the B cells and the T cell receptors (TR) of the T cells. The IG are proteins that have a dual role in immunity: they recognize antigens and trigger elimination mechanisms, to rid the body of foreign cells. The synthesis of the immunoglobulin heavy and light chains requires gene rearrangements at the DNA level in the IGH, IGK, and IGL loci. The rhesus monkey (Macaca mulatta) is one of the most widely used nonhuman primate species in biomedical research. In this manuscript, we provide a thorough analysis of the three IG loci of the Mmul_10 assembly of rhesus monkey, integrating IMGT previously existing data. Detailed characterization of IG genes includes their localization and position in the loci, the determination of the allele functionality, and the description of the regulatory elements of their promoters as well as the sequences of the conventional recombination signals (RS). This complete annotation of the genomic IG loci of Mmul_10 assembly and the highly detailed IG gene characterization could be used as a model, in additional rhesus monkey assemblies, for the analysis of the IG allelic polymorphism and structural variation, which have been described in rhesus monkeys.

10.
Nucleic Acids Res ; 50(D1): D1262-D1272, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34875068

RESUMEN

IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org/, is at the forefront of the immunogenetics and immunoinformatics fields with more than 30 years of experience. IMGT® makes available databases and tools to the scientific community pertaining to the adaptive immune response, based on the IMGT-ONTOLOGY. We focus on the recent features of the IMGT® databases, tools, reference directories and web resources, within the three main axes of IMGT® research and development. Axis I consists in understanding the adaptive immune response, by deciphering the identification and characterization of the immunoglobulin (IG) and T cell receptor (TR) genes in jawed vertebrates. It is the starting point of the two other axes, namely the analysis and exploration of the expressed IG and TR repertoires based on comparison with IMGT reference directories in normal and pathological situations (Axis II) and the analysis of amino acid changes and functions of 2D and 3D structures of antibody and TR engineering (Axis III).


Asunto(s)
Inmunidad Adaptativa/inmunología , Bases de Datos Genéticas , Inmunogenética , Vertebrados/genética , Inmunidad Adaptativa/genética , Animales , Anticuerpos/clasificación , Anticuerpos/inmunología , Humanos , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Vertebrados/inmunología
11.
Genes (Basel) ; 12(4)2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919966

RESUMEN

The bottlenose dolphin (Tursiops truncatus) belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T. truncatus T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3' end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes. We have analyzed the relevant mature transcripts from two subjects. The simultaneous availability of rearranged T cell receptor α (TRA) and TRB cDNA from the peripheral blood of one of the two specimens, and the human/dolphin amino acids multi-sequence alignments, allowed us to calculate the most likely interactions at the protein interface between the alpha/beta heterodimer in complex with major histocompatibility class I (MH1) protein. Interacting amino acids located in the complementarity-determining region according to IMGT numbering (CDR-IMGT) of the dolphin variable V-alpha and beta domains were identified. According to comparative modelization, the atom pair contact sites analysis between the human MH1 grove (G) domains and the T cell receptor (TR) V domains confirms conservation of the structure of the dolphin TR/pMH.


Asunto(s)
Delfín Mular/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos , Animales , Mapeo Cromosómico , Femenino , Reordenamiento Génico de la Cadena alfa de los Receptores de Antígenos de los Linfocitos T , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Masculino , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Alineación de Secuencia , Microglobulina beta-2/metabolismo
12.
Cells ; 10(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671805

RESUMEN

Lipid Droplets (LD) are dynamic organelles that originate in the Endoplasmic Reticulum and mostly bud off toward the cytoplasm, where they store neutral lipids for energy and protection purposes. LD also have diverse proteins on their surface, many of which are necessary for the their correct homeostasis. However, these organelles also act as reservoirs of proteins that can be made available elsewhere in the cell. In this sense, they act as sinks that titrate key regulators of many cellular processes. Among the specialized factors that reside on cytoplasmic LD are proteins destined for functions in the nucleus, but little is known about them and their impact on nuclear processes. By screening for nuclear proteins in publicly available LD proteomes, we found that they contain a subset of nucleoporins from the Nuclear Pore Complex (NPC). Exploring this, we demonstrate that LD act as a physiological reservoir, for nucleoporins, that impacts the conformation of NPCs and hence their function in nucleo-cytoplasmic transport, chromatin configuration, and genome stability. Furthermore, our in silico modeling predicts a role for LD-released fatty acids in regulating the transit of nucleoporins from LD through the cytoplasm and to nuclear pores.


Asunto(s)
Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Poro Nuclear/metabolismo , Humanos
13.
Genes (Basel) ; 12(1)2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379283

RESUMEN

The adaptive immune response provides the vertebrate immune system with the ability to recognize and remember specific pathogens to generate immunity, and mount stronger attacks each time the pathogen is encountered. T cell receptors are the antigen receptors of the adaptive immune response expressed by T cells, which specifically recognize processed antigens, presented as peptides by the highly polymorphic major histocompatibility (MH) proteins. T cell receptors (TR) are divided into two groups, αß and γδ, which express distinct TR containing either α and ß, or γ and δ chains, respectively. The TRα locus (TRA) and TRδ locus (TRD) of bovine (Bos taurus) and the sheep (Ovis aries) have recently been described and annotated by IMGT® biocurators. The aim of the present study is to present the results of the biocuration and to compare the genes of the TRA/TRD loci among these ruminant species based on the Homo sapiens repertoire. The comparative analysis shows similarities but also differences, including the fact that these two species have a TRA/TRD locus about three times larger than that of humans and therefore have many more genes which may demonstrate duplications and/or deletions during evolution.


Asunto(s)
Bovinos/genética , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T/genética , Sitios Genéticos/inmunología , Oveja Doméstica/genética , Inmunidad Adaptativa/genética , Animales , Bovinos/inmunología , Evolución Molecular , Anotación de Secuencia Molecular , Oveja Doméstica/inmunología , Especificidad de la Especie
14.
PeerJ ; 8: e10334, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194454

RESUMEN

Notch family proteins play a key role in a variety of developmental processes by controlling cell fate decisions and operating in a great number of biological processes in several organ systems, such as hematopoiesis, somatogenesis, vasculogenesis, neurogenesis and homeostasis. The Notch signaling pathway is crucial for the majority of developmental programs and regulates multiple pathogenic processes. Notch family receptors' activation has been largely related to its multiple effects in sustaining oncogenesis. The Notch signaling pathway constitutes an ancient and conserved mechanism for cell to cell communication. Much of what is known about Notch family proteins function comes from studies done in Caenorhabditis Elegans and Drosophila Melanogaster. Although, human Notch homologs had also been identified, the molecular mechanisms which modulate the Notch signaling pathway remained substantially unknown. In this study, an updated evolutionary analysis of the Notch family members among 603 different organisms of all kingdoms, from bacteria to humans, was performed in order to discover key regions that have been conserved throughout evolution and play a major role in the Notch signaling pathway. The major goal of this study is the presentation of a novel updated phylogenetic tree for the Notch family as a reliable phylogeny "map", in order to correlate information of the closely related members and identify new possible pharmacological targets that can be used in pathogenic cases, including cancer.

15.
Front Immunol ; 11: 821, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431713

RESUMEN

IMGT®, the international ImMunoGeneTics information system® is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. T cell receptors are divided into two groups, αß and γδ TR, which express distinct TR containing either α and ß, or γ and δ chains, respectively. The TRß locus (TRB) was recently described and annotated by IMGT® biocurators for several veterinary species, i.e., cat (Felis catus), dog (Canis lupus familiaris), ferret (Mustela putorius furo), pig (Sus scrofa), rabbit (Oryctolagus cuniculus), rhesus monkey (Macaca mulatta), and sheep (Ovis aries). The aim of the present study is to compare the genes of the TRB locus among these different veterinary species based on Homo sapiens. The results reveal that there are similarities but also differences including the number of genes by subgroup which may demonstrate duplications and/or deletions during evolution.


Asunto(s)
Biología Computacional/métodos , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Sitios Genéticos , Inmunogenética/métodos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Animales , Gatos , Bases de Datos Genéticas , Perros , Hurones/genética , Hurones/inmunología , Humanos , Macaca mulatta/genética , Macaca mulatta/inmunología , Familia de Multigenes , Filogenia , Conejos , Ovinos/genética , Ovinos/inmunología , Porcinos/genética , Porcinos/inmunología
16.
Front Immunol ; 10: 435, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936866

RESUMEN

Immunoglobulins or antibodies are the main effector molecules of the B-cell lineage and are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes, which recombine to generate enormous IG diversity. Recently, high-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has offered unprecedented insights into the dynamics of IG repertoires in health and disease. Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw AIRR-seq data, using reference germline gene databases to identify the germline genes within each rearrangement. Existing reference databases are incomplete, as shown by recent AIRR-seq studies that have inferred the existence of many previously unreported polymorphisms. Completing the documentation of genetic variation in germline gene databases is therefore of crucial importance. Lymphocyte receptor genes and alleles are currently assigned by the Immunoglobulins, T cell Receptors and Major Histocompatibility Nomenclature Subcommittee of the International Union of Immunological Societies (IUIS) and managed in IMGT®, the international ImMunoGeneTics information system® (IMGT). In 2017, the IMGT Group reached agreement with a group of AIRR-seq researchers on the principles of a streamlined process for identifying and naming inferred allelic sequences, for their incorporation into IMGT®. These researchers represented the AIRR Community, a network of over 300 researchers whose objective is to promote all aspects of immunoglobulin and T-cell receptor repertoire studies, including the standardization of experimental and computational aspects of AIRR-seq data generation and analysis. The Inferred Allele Review Committee (IARC) was established by the AIRR Community to devise policies, criteria, and procedures to perform this function. Formalized evaluations of novel inferred sequences have now begun and submissions are invited via a new dedicated portal (https://ogrdb.airr-community.org). Here, we summarize recommendations developed by the IARC-focusing, to begin with, on human IGHV genes-with the goal of facilitating the acceptance of inferred allelic variants of germline IGHV genes. We believe that this initiative will improve the quality of AIRR-seq studies by facilitating the description of human IG germline gene variation, and that in time, it will expand to the documentation of TR and IG genes in many vertebrate species.


Asunto(s)
Alelos , Genes de Inmunoglobulinas , Variación Genética/genética , Terminología como Asunto , Recombinación V(D)J , Secuencia de Bases , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Biblioteca de Genes , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Reacción en Cadena de la Polimerasa/métodos , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Exones VDJ/genética
17.
Life Sci Alliance ; 1(3): e201800096, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30456359

RESUMEN

The DNA damage response (DDR) ensures cellular adaptation to genotoxic insults. In the crowded environment of the nucleus, the assembly of productive DDR complexes requires multiple protein modifications. How the apical E1 ubiquitin activation enzyme UBA1 integrates spatially and temporally in the DDR remains elusive. Using a human cell-free system, we show that poly(ADP-ribose) polymerase 1 promotes the recruitment of UBA1 to DNA. We find that the association of UBA1 with poly(ADP-ribosyl)ated protein-DNA complexes is necessary for the phosphorylation replication protein A and checkpoint kinase 1 by the serine/threonine protein kinase ataxia-telangiectasia and RAD3-related, a prototypal response to DNA damage. UBA1 interacts directly with poly(ADP-ribose) via a solvent-accessible and positively charged patch conserved in the Animalia kingdom but not in Fungi. Thus, ubiquitin activation can anchor to poly(ADP-ribose)-seeded protein assemblies, ensuring the formation of functional ataxia-telangiectasia mutated and RAD3-related-signalling complexes.

18.
Methods Mol Biol ; 1827: 35-69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30196491

RESUMEN

IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. Standardized sequence and structure analysis of antibody using IMGT® databases and tools allow one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Collier de Perles). IMGT® is acknowledged as the global reference for immunogenetics and immunoinformatics, and its standards are particularly useful for antibody engineering and humanization. IMGT® databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, and nucleotide sequence analysis is performed by the IMGT/V-QUEST and IMGT/JunctionAnalysis tools and for NGS by IMGT/HighV-QUEST. In this chapter, we focus on IMGT® databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT Collier de Perles tools and the IMGT/2Dstructure-DB and IMGT/3Dstructure-DB database. IMGT/mAb-DB provides the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA) and related proteins of interest (RPI) and links to the proposed and recommended lists of the World Health Organization International Nonproprietary Name (WHO INN) programme, to IMGT/2Dstructure-DB for amino acid sequences, and to IMGT/3Dstructure-DB and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose) for crystallized antibodies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Bases de Datos de Proteínas , Inmunogenética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Animales , Epítopos/química , Humanos , Ratones , Dominios Proteicos
19.
Front Immunol ; 9: 329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545792

RESUMEN

The simian immunodeficiency virus (SIV)/macaque model of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome pathogenesis is critical for furthering our understanding of the role of antibody responses in the prevention of HIV infection, and will only increase in importance as macaque immunoglobulin (IG) gene databases are expanded. We have previously reported the construction of a phage display library from a SIV-infected rhesus macaque (Macaca mulatta) using oligonucleotide primers based on human IG gene sequences. Our previous screening relied on Sanger sequencing, which was inefficient and generated only a few dozen sequences. Here, we re-analyzed this library using single molecule, real-time (SMRT) sequencing on the Pacific Biosciences (PacBio) platform to generate thousands of highly accurate circular consensus sequencing (CCS) reads corresponding to full length single chain fragment variable. CCS data were then analyzed through the international ImMunoGeneTics information system® (IMGT®)/HighV-QUEST (www.imgt.org) to identify variable genes and perform statistical analyses. Overall the library was very diverse, with 2,569 different IMGT clonotypes called for the 5,238 IGHV sequences assigned to an IMGT clonotype. Within the library, SIV-specific antibodies represented a relatively limited number of clones, with only 135 different IMGT clonotypes called from 4,594 IGHV-assigned sequences. Our data did confirm that the IGHV4 and IGHV3 gene usage was the most abundant within the rhesus antibodies screened, and that these genes were even more enriched among SIV gp140-specific antibodies. Although a broad range of VH CDR3 amino acid (AA) lengths was observed in the unpanned library, the vast majority of SIV gp140-specific antibodies demonstrated a more uniform VH CDR3 length (20 AA). This uniformity was far less apparent when VH CDR3 were classified according to their clonotype (range: 9-25 AA), which we believe is more relevant for specific antibody identification. Only 174 IGKV and 588 IGLV clonotypes were identified within the VL sequences associated with SIV gp140-specific VH. Together, these data strongly suggest that the combination of SMRT sequencing with the IMGT/HighV-QUEST querying tool will facilitate and expedite our understanding of polyclonal antibody responses during SIV infection and may serve to rapidly expand the known scope of macaque V genes utilized during these responses.


Asunto(s)
Anticuerpos Antivirales , Especificidad de Anticuerpos , Productos del Gen env/inmunología , Biblioteca de Péptidos , Virus de la Inmunodeficiencia de los Simios/inmunología , Anticuerpos de Cadena Única , Animales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Macaca mulatta , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/inmunología
20.
BMC Immunol ; 18(1): 35, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651553

RESUMEN

BACKGROUND: IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain. METHODS: The functionality "Analyis of single chain Fragment variable (scFv)" has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation. RESULTS: For each sequence or NGS read, positions of the 5'V-DOMAIN, linker and 3'V-DOMAIN in the scFv are provided in the 'V-orientated' sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available. CONCLUSION: The "Analysis of single chain Fragment variable (scFv)" implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.


Asunto(s)
Inmunogenética/métodos , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos T/genética , Anticuerpos de Cadena Única/genética , Inmunidad Adaptativa/genética , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...