Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; 2(4): e000365, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23974906

RESUMEN

BACKGROUND: KATP channels, assembled from pore-forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina-like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. METHODS AND RESULTS: We generated transgenic mice expressing wild-type (WT), ATP-insensitive Kir6.1 [Gly343Asp] (GD), and ATP-insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD-QR) subunits, under Cre-recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter-driven tamoxifen-inducible Cre-recombinase (SMMHC-Cre-ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD-QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant-negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD-QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil-activated conductance were elevated in GD but not in WT myocytes. CONCLUSIONS: KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome.


Asunto(s)
Presión Sanguínea , Hipotensión/metabolismo , Canales KATP/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Relación Dosis-Respuesta a Droga , Predisposición Genética a la Enfermedad , Hipotensión/genética , Hipotensión/fisiopatología , Canales KATP/genética , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Mutación , Fenotipo , Potasio/metabolismo , Vasoconstricción , Vasodilatación , Vasodilatadores/farmacología
2.
Diabetes ; 60(1): 209-17, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20980454

RESUMEN

OBJECTIVE: The ATP-sensitive K(+) channel (K(ATP)) controls insulin secretion from the islet. Gain- or loss-of-function mutations in channel subunits underlie human neonatal diabetes and congenital hyperinsulinism (HI), respectively. In this study, we sought to identify the mechanistic basis of K(ATP)-induced HI in two probands and to characterize the clinical course. RESEARCH DESIGN AND METHODS: We analyzed HI in two probands and characterized the course of clinical treatment in each, as well as properties of mutant K(ATP) channels expressed in COSm6 cells using Rb efflux and patch-clamp methods. RESULTS: We identified mutation V290M in the pore-forming Kir6.2 subunit in each proband. In vitro expression in COSm6 cells supports the mutation resulting in an inactivating phenotype, which leads to significantly reduced activity in intact cells when expressed homomerically, and to a lesser extent when expressed heteromerically with wild-type subunits. In one heterozygous proband, a fluoro-DOPA scan revealed a causal focal lesion, indicating uniparental disomy with loss of heterozygosity. In a second family, the proband, homozygous for the mutation, was diagnosed with severe diazoxide-unresponsive hypersinsulinism at 2 weeks of age. The patient continues to be treated successfully with octreotide and amlodipine. The parents and a male sibling are heterozygous carriers without overt clinical HI. Interestingly, both the mother and the sibling exhibit evidence of abnormally enhanced glucose tolerance. CONCLUSIONS: V290M results in inactivating K(ATP) channels that underlie HI. Homozygous individuals may be managed medically, without pancreatectomy. Heterozygous carriers also show evidence of enhanced glucose sensitivity, consistent with incomplete loss of K(ATP) channel activity.


Asunto(s)
Hiperinsulinismo/congénito , Polimorfismo de Nucleótido Simple , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio/genética , Adenosina Trifosfato/antagonistas & inhibidores , Portador Sano , Niño , ADN/sangre , ADN/genética , ADN/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Amplificación de Genes , Silenciador del Gen , Prueba de Tolerancia a la Glucosa , Heterocigoto , Homocigoto , Humanos , Hiperinsulinismo/terapia , Immunoblotting , Insulina/metabolismo , Secreción de Insulina , Activación del Canal Iónico/genética , Islotes Pancreáticos/metabolismo , Masculino , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Canales de Potasio/fisiología , Rubidio/metabolismo
3.
J Biol Chem ; 285(47): 36395-400, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20864532

RESUMEN

HIV protease inhibitors acutely block glucose transporters (GLUTs) in vitro, and this may contribute to altered glucose homeostasis in vivo. However, several GLUT-independent mechanisms have been postulated. To determine the contribution of GLUT blockade to protease inhibitor-mediated glucose dysregulation, the effects of ritonavir were investigated in mice lacking the insulin-sensitive glucose transporter GLUT4 (G4KO). G4KO and control C57BL/6J mice were administered ritonavir or vehicle at the start of an intraperitoneal glucose tolerance test and during hyperinsulinemic-euglycemic clamps. G4KO mice exhibited elevated fasting blood glucose compared with C57BL/6J mice. Ritonavir impaired glucose tolerance in control mice but did not exacerbate glucose intolerance in G4KO mice. Similarly, ritonavir reduced peripheral insulin sensitivity in control mice but not in G4KO mice. Serum insulin levels were reduced in vivo in ritonavir-treated mice. Ritonavir reduced serum leptin levels in C57BL/6J mice but had no effect on serum adiponectin. No change in these adipokines was observed following ritonavir treatment of G4KO mice. These data confirm that a primary effect of ritonavir on peripheral glucose disposal is mediated through direct inhibition of GLUT4 activity in vivo. The ability of GLUT4 blockade to contribute to derangements in the other molecular pathways that influence insulin sensitivity remains to be determined.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Transportador de Glucosa de Tipo 4/fisiología , Inhibidores de la Proteasa del VIH/farmacología , Músculo Esquelético/efectos de los fármacos , Ritonavir/farmacología , Adipoquinas/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Glucemia/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
4.
Physiol Rev ; 90(3): 799-829, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20664073

RESUMEN

ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.


Asunto(s)
Canales KATP/metabolismo , Músculo Esquelético/metabolismo , Músculo Liso/metabolismo , Miocardio/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Corazón/fisiología , Corazón/fisiopatología , Humanos , Canales KATP/química , Canales KATP/genética , Estructura Molecular , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Músculo Liso Vascular/fisiología , Mutación , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Receptores de Sulfonilureas , Sistema Vasomotor/fisiología , Vísceras/metabolismo
5.
Dev Biol ; 346(1): 39-53, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20643119

RESUMEN

Consistent left-right asymmetry requires specific ion currents. We characterize a novel laterality determinant in Xenopus laevis: the ATP-sensitive K(+)-channel (K(ATP)). Expression of specific dominant-negative mutants of the Xenopus Kir6.1 pore subunit of the K(ATP) channel induced randomization of asymmetric organ positioning. Spatio-temporally controlled loss-of-function experiments revealed that the K(ATP) channel functions asymmetrically in LR patterning during very early cleavage stages, and also symmetrically during the early blastula stages, a period when heretofore largely unknown events transmit LR patterning cues. Blocking K(ATP) channel activity randomizes the expression of the left-sided transcription of Nodal. Immunofluorescence analysis revealed that XKir6.1 is localized to basal membranes on the blastocoel roof and cell-cell junctions. A tight junction integrity assay showed that K(ATP) channels are required for proper tight junction function in early Xenopus embryos. We also present evidence that this function may be conserved to the chick, as inhibition of K(ATP) in the primitive streak of chick embryos randomizes the expression of the left-sided gene Sonic hedgehog. We propose a model by which K(ATP) channels control LR patterning via regulation of tight junctions.


Asunto(s)
Tipificación del Cuerpo , Embrión de Pollo/crecimiento & desarrollo , Canales KATP/fisiología , Xenopus laevis/embriología , Animales , Blastómeros/metabolismo , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Uniones Estrechas/fisiología
6.
Pflugers Arch ; 460(2): 307-20, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19921246

RESUMEN

Adenosine-triphosphate-sensitive potassium channels (KATP) are regulated by adenosine nucleotides, and, thereby, couple cellular metabolism with electrical activity in multiple tissues including the pancreatic beta-cell. The critical involvement of KATP in insulin secretion is confirmed by the demonstration that inactivating and activating mutations in KATP underlie persistent hyperinsulinemia and neonatal diabetes mellitus, respectively, in both animal models and humans. In addition, a common variant in KATP represents a risk factor in the etiology of type 2 diabetes. This review focuses on the mechanistic basis by which KATP mutations underlie insulin secretory disorders and the implications of these findings for successful clinical intervention.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Canalopatías/fisiopatología , Hiperinsulinismo Congénito/genética , Canales de Potasio de Rectificación Interna/fisiología , Receptores de Droga/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Animales , Canalopatías/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/genética , Receptores de Sulfonilureas
7.
Pediatr Diabetes ; 11(4): 286-8, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19656320

RESUMEN

Activating mutations in the K(ATP)-channel cause neonatal diabetes mellitus (NDM), and patients have been safely transitioned from insulin to sulfonylureas. We report a male infant with permanent NDM (PNDM), born to a PNDM mother. Blood glucose began to rise on day of life (DOL) 2, and sulfonylurea (glyburide) therapy was initiated on DOL 5. Glucose was subsequently well controlled and normal at 3 months. A K(ATP) mutation (R201H; KCNJ11) was detected in the infant, the mother, and 6-yr-old sister with PNDM; both were also subsequently transitioned off insulin onto glyburide. To our knowledge, this is the youngest NDM patient to receive oral glyburide and, importantly, the only one deliberately initiated on sulfonylureas. Strikingly, the current dose (0.017 mg/kg/d) is below the reported therapeutic range and approximately 75-fold lower than doses required by the affected sister and mother. Pancreatic insulin disappears in an animal model of K(ATP)-induced NDM, unless glycemia is well controlled, thus, a dramatically lower glyburide requirement in the infant may reflect preserved insulin content because of early sulfonylurea intervention. Safe and effective initiation of glyburide in an insulin-naïve neonatal patient with K(ATP)-dependent PNDM argues for early detection and sulfonylurea intervention.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética , Gliburida/uso terapéutico , Hipoglucemiantes/uso terapéutico , Canales de Potasio de Rectificación Interna/genética , Glucemia/efectos de los fármacos , Glucemia/genética , Niño , Diabetes Mellitus/diagnóstico , Diagnóstico Precoz , Femenino , Humanos , Recién Nacido , Insulina/uso terapéutico , Masculino , Mutación , Resultado del Tratamiento , Adulto Joven
8.
Diabetes ; 58(8): 1869-78, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19491206

RESUMEN

OBJECTIVE: The E23K variant in the Kir6.2 subunit of the ATP-sensitive K(+) channel (K(ATP) channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS: Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope-labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS: Insulin secretory responses to oral and intravenous glucose were reduced by approximately 40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is approximately 40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS: The E23K variant leads to overactivity of the K(ATP) channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes.


Asunto(s)
Insulina/metabolismo , Canales KATP/fisiología , Canales de Potasio de Rectificación Interna/genética , Transportadoras de Casetes de Unión a ATP/genética , Adulto , Sustitución de Aminoácidos , Estudios Transversales , Femenino , Variación Genética , Genotipo , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Secreción de Insulina , Masculino , Persona de Mediana Edad , Receptores de Droga/genética , Valores de Referencia , Receptores de Sulfonilureas
9.
Cell Metab ; 9(2): 140-51, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19187772

RESUMEN

ATP-insensitive K(ATP) channel mutations cause neonatal diabetes mellitus (NDM). To explore the mechanistic etiology, we generated transgenic mice carrying an ATP-insensitive mutant K(ATP) channel subunit. Constitutive expression in pancreatic beta cells caused neonatal hyperglycemia and progression to severe diabetes and growth retardation, with loss of islet insulin content and beta cell architecture. Tamoxifen-induced expression in adult beta cells led to diabetes within 2 weeks, with similar secondary consequences. Diabetes was prevented by transplantation of normal islets under the kidney capsule. Moreover, the endogenous islets maintained normal insulin content and secretion in response to sulfonylureas, but not glucose, consistent with reduced ATP sensitivity of beta cell K(ATP) channels. In NDM, transfer to sulfonylurea therapy is less effective in older patients. This may stem from poor glycemic control or lack of insulin because glibenclamide treatment prior to tamoxifen induction prevented diabetes and secondary complications in mice but failed to halt disease progression after diabetes had developed.


Asunto(s)
Diabetes Mellitus Experimental/genética , Células Secretoras de Insulina/fisiología , Canales KATP/genética , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/fisiopatología , Gliburida/farmacología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Transgénicos , Modelos Animales , Compuestos de Sulfonilurea/farmacología , Tamoxifeno/farmacología
10.
Biophys J ; 95(10): 4689-97, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18708460

RESUMEN

ATP-sensitive K(+)-channels link metabolism and excitability in neurons, myocytes, and pancreatic islets. Mutations in the pore-forming subunit (Kir6.2; KCNJ11) cause neonatal diabetes, developmental delay, and epilepsy by decreasing sensitivity to ATP inhibition and suppressing electrical activity. Mutations of residue G53 underlie both mild (G53R,S) and severe (G53D) forms of the disease. All examined substitutions (G53D,R,S,A,C,F) reduced ATP-sensitivity, indicating an intolerance of any amino acid other than glycine. Surprisingly, each mutation reduces ATP affinity, rather than intrinsic gating, although structural modeling places G53 at a significant distance from the ATP-binding pocket. We propose that glycine is required in this location for flexibility of the distal N-terminus, and for an induced fit of ATP at the binding site. Consistent with this hypothesis, glycine substitution of the adjacent residue (Q52G) partially rescues ATP affinity of reconstituted Q52G/G53D channels. The results reveal an important feature of the noncanonical ATP-sensing mechanism of K(ATP) channels.


Asunto(s)
Adenosina Trifosfato/metabolismo , Canales KATP/metabolismo , Potenciales de la Membrana/fisiología , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/química , Animales , Células COS , Chlorocebus aethiops , Canales KATP/química , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad
11.
J Clin Endocrinol Metab ; 93(3): 1054-61, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18073297

RESUMEN

CONTEXT: Mutations in the Kir6.2 subunit (KCNJ11) of the ATP-sensitive potassium channel (KATP) underlie neonatal diabetes mellitus. In severe cases, Kir6.2 mutations underlie developmental delay, epilepsy, and neonatal diabetes (DEND). All Kir6.2 mutations examined decrease the ATP inhibition of KATP, which is predicted to suppress electrical activity in neurons (peripheral and central), muscle, and pancreas. Inhibitory sulfonylureas (SUs) have been used successfully to treat diabetes in patients with activating Kir6.2 mutations. There are two reports of improved neurological features in SU-treated DEND patients but no report of such improvement in adulthood. OBJECTIVE: The objective of the study was to determine the molecular basis of intermediate DEND in a 27-yr-old patient with a KCNJ11 mutation (G53D) and the patient's response to SU therapy. DESIGN: The G53D patient was transferred from insulin to gliclazide and then to glibenclamide over a 160-d period. Motor function was assessed throughout. Electrophysiology assessed the effect of the G53D mutation on KATP activity. RESULTS: The G53D patient demonstrated improved glycemic control and motor coordination with SU treatment, although glibenclamide was more effective than gliclazide. Reconstituted G53D channels exhibit reduced ATP sensitivity, which is predicted to suppress electrical activity in vivo. G53D channels coexpressed with SUR1 (the pancreatic and neuronal isoform) exhibit high-affinity block by gliclazide but are insensitive to block when coexpressed with SUR2A (the skeletal muscle isoform). High-affinity block by glibenclamide is present in G53D channels coexpressed with either SUR1 or SUR2A. CONCLUSION: The results demonstrate that SUs can resolve motor dysfunction in an adult with intermediate DEND and that this improvement is due to inhibition of the neuronal but not skeletal muscle KATP.


Asunto(s)
Diabetes Mellitus/genética , Canales de Potasio de Rectificación Interna/genética , Compuestos de Sulfonilurea/uso terapéutico , Adenosina Trifosfato/farmacología , Adulto , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/fisiopatología , Genotipo , Humanos , Recién Nacido , Actividad Motora , Mutación , Canales de Potasio de Rectificación Interna/fisiología
12.
Diabetes ; 56(2): 328-36, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17259376

RESUMEN

Mutations in the pancreatic ATP-sensitive K(+) channel (K(ATP) channel) cause permanent neonatal diabetes mellitus (PNDM) in humans. All of the K(ATP) channel mutations examined result in decreased ATP inhibition, which in turn is predicted to suppress insulin secretion. Here we describe a patient with severe PNDM, which includes developmental delay and epilepsy, in addition to neonatal diabetes (developmental delay, epilepsy, and neonatal diabetes [DEND]), due to a G334D mutation in the Kir6.2 subunit of K(ATP) channel. The patient was wholly unresponsive to sulfonylurea therapy (up to 1.14 mg . kg(-1) . day(-1)) and remained insulin dependent. Consistent with the putative role of G334 as an ATP-binding residue, reconstituted homomeric and mixed WT+G334D channels exhibit absent or reduced ATP sensitivity but normal gating behavior in the absence of ATP. In disagreement with the sulfonylurea insensitivity of the affected patient, the G334D mutation has no effect on the sulfonylurea inhibition of reconstituted channels in excised patches. However, in macroscopic rubidium-efflux assays in intact cells, reconstituted mutant channels do exhibit a decreased, but still present, sulfonylurea response. The results demonstrate that ATP-binding site mutations can indeed cause DEND and suggest the possibility that sulfonylurea insensitivity of such patients may be a secondary reflection of the presence of DEND rather than a simple reflection of the underlying molecular basis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/genética , Discapacidades del Desarrollo/genética , Diabetes Mellitus Tipo 1/genética , Epilepsia/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio/genética , Receptores de Droga/genética , Adenosina Trifosfato/metabolismo , Adolescente , Alelos , Sitios de Unión/genética , Diabetes Mellitus Tipo 1/congénito , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Humanos , Hipoglucemiantes/uso terapéutico , Recién Nacido , Masculino , Canales de Potasio de Rectificación Interna/metabolismo , Compuestos de Sulfonilurea/uso terapéutico , Receptores de Sulfonilureas , Síndrome , Tolbutamida/metabolismo
13.
Diabetes ; 55(11): 2957-64, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17065331

RESUMEN

Glucose metabolism in pancreatic beta-cells elevates cytoplasmic [ATP]/[ADP], causing closure of ATP-sensitive K(+) channels (K(ATP) channels), Ca(2+) entry through voltage-dependent Ca(2+) channels, and insulin release. Decreased responsiveness of K(ATP) channels to the [ATP]/[ADP] ratio should lead to decreased insulin secretion and diabetes. We generated mice expressing K(ATP) channels with reduced ATP sensitivity in their beta-cells. Previously, we described a severe diabetes, with nearly complete neonatal lethality, in four lines (A-C and E) of these mice. We have now analyzed an additional three lines (D, F, and G) in which the transgene is expressed at relatively low levels. These animals survive past weaning but are glucose intolerant and can develop severe diabetes. Despite normal islet morphology and insulin content, islets from glucose-intolerant animals exhibit reduced glucose-stimulated insulin secretion. The data demonstrate that a range of phenotypes can be expected for a reduction in ATP sensitivity of beta-cell K(ATP) channels and provide models for the corollary neonatal diabetes in humans.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Células Secretoras de Insulina/fisiología , Canales de Potasio de Rectificación Interna/genética , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Diabetes Mellitus Experimental/genética , Insulina/sangre , Islotes Pancreáticos/fisiología , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp
14.
PLoS Biol ; 4(2): e26, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16402858

RESUMEN

Pancreatic beta-cells secrete insulin in response to closure of ATP-sensitive K+ (KATP) channels, which causes membrane depolarization and a concomitant rise in intracellular Ca2+ (Cai). In intact islets, beta-cells are coupled by gap junctions, which are proposed to synchronize electrical activity and Cai oscillations after exposure to stimulatory glucose (>7 mM). To determine the significance of this coupling in regulating insulin secretion, we examined islets and beta-cells from transgenic mice that express zero functional KATP channels in approximately 70% of their beta-cells, but normal KATP channel density in the remainder. We found that KATP channel activity from approximately 30% of the beta-cells is sufficient to maintain strong glucose dependence of metabolism, Cai, membrane potential, and insulin secretion from intact islets, but that glucose dependence is lost in isolated transgenic cells. Further, inhibition of gap junctions caused loss of glucose sensitivity specifically in transgenic islets. These data demonstrate a critical role of gap junctional coupling of KATP channel activity in control of membrane potential across the islet. Control via coupling lessens the effects of cell-cell variation and provides resistance to defects in excitability that would otherwise lead to a profound diabetic state, such as occurs in persistent neonatal diabetes mellitus.


Asunto(s)
Uniones Comunicantes/metabolismo , Insulina/metabolismo , Canales de Potasio/metabolismo , Animales , Calcio/química , Calcio/metabolismo , Cationes Bivalentes/química , Células Cultivadas , Glucosa , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Técnicas de Cultivo de Tejidos
15.
Diabetes ; 54(11): 3065-72, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16249427

RESUMEN

The ATP-sensitive K+ channel (K ATP channel) senses metabolic changes in the pancreatic beta-cell, thereby coupling metabolism to electrical activity and ultimately to insulin secretion. When K ATP channels open, beta-cells hyperpolarize and insulin secretion is suppressed. The prediction that K ATP channel "overactivity" should cause a diabetic state due to undersecretion of insulin has been dramatically borne out by recent genetic studies implicating "activating" mutations in the Kir6.2 subunit of K ATP channel as causal in human diabetes. This article summarizes the emerging picture of K ATP channel as a major cause of neonatal diabetes and of a polymorphism in K ATP channel (E23K) as a type 2 diabetes risk factor. The degree of K ATP channel "overactivity" correlates with the severity of the diabetic phenotype. At one end of the spectrum, polymorphisms that result in a modest increase in K ATP channel activity represent a risk factor for development of late-onset diabetes. At the other end, severe "activating" mutations underlie syndromic neonatal diabetes, with multiple organ involvement and complete failure of glucose-dependent insulin secretion, reflecting K ATP channel "overactivity" in both pancreatic and extrapancreatic tissues.


Asunto(s)
Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Secreción de Insulina , Mutación/genética
16.
Diabetes ; 54(10): 2925-31, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16186394

RESUMEN

As the rate-limiting controller of glucose metabolism, glucokinase represents the primary beta-cell "glucose sensor." Inactivation of both glucokinase (GK) alleles results in permanent neonatal diabetes; inactivation of a single allele causes maturity-onset diabetes of the young type 2 (MODY-2). Similarly, mice lacking both alleles (GK(-/-)) exhibit severe neonatal diabetes and die within a week, whereas heterozygous GK(+/-) mice exhibit markedly impaired glucose tolerance and diabetes, resembling MODY-2. Glucose metabolism increases the cytosolic [ATP]-to-[ADP] ratio, which closes ATP-sensitive K(+) channels (K(ATP) channels), leading to membrane depolarization, Ca(2+) entry, and insulin exocytosis. Glucokinase insufficiency causes defective K(ATP) channel regulation, which may underlie the impaired secretion. To test this prediction, we crossed mice lacking neuroendocrine glucokinase (nGK(+/-)) with mice lacking K(ATP) channels (Kir6.2(-/-)). Kir6.2 knockout rescues perinatal lethality of nGK(-/-), although nGK(-/-)Kir6.2(-/-) animals are postnatally diabetic and still die prematurely. nGK(+/-) animals are diabetic on the Kir6.2(+/+) background but only mildly glucose intolerant on the Kir6.2(-/-) background. In the presence of glutamine, isolated nGK(+/-)Kir6.2(-/-) islets show improved insulin secretion compared with nGK(+/-)Kir6.2(+/+). The significant abrogation of nGK(-/-) and nGK(+/-) phenotypes in the absence of K(ATP) demonstrate that a major factor in glucokinase deficiency is indeed altered K(ATP) signaling. The results have implications for understanding and therapy of glucokinase-related diabetes.


Asunto(s)
Diabetes Mellitus/enzimología , Glucoquinasa/deficiencia , Canales de Potasio de Rectificación Interna/fisiología , Transducción de Señal , Animales , Animales Recién Nacidos , Glucemia/análisis , Cruzamientos Genéticos , Diabetes Mellitus/genética , Diabetes Mellitus/mortalidad , Genotipo , Glucoquinasa/fisiología , Glutamina/farmacología , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia
17.
Diabetes ; 54(9): 2645-54, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16123353

RESUMEN

The prediction that overactivity of the pancreatic ATP-sensitive K(+) channel (K(ATP) channel) underlies reduced insulin secretion and causes a diabetic phenotype in humans has recently been borne out by genetic studies implicating "activating" mutations in the Kir6.2 subunit of K(ATP) as causal in both permanent and transient neonatal diabetes. Here we characterize the channel properties of Kir6.2 mutations that underlie transient neonatal diabetes (I182V) or more severe forms of permanent neonatal diabetes (V59M, Q52R, and I296L). In all cases, the mutations result in a significant decrease in sensitivity to inhibitory ATP, which correlates with channel "overactivity" in intact cells. Mutations can be separated into those that directly affect ATP affinity (I182V) and those that stabilize the open conformation of the channel and indirectly reduce ATP sensitivity (V59M, Q52R, and I296L). With respect to the latter group, alterations in channel gating are also reflected in a functional "uncoupling" of sulfonylurea (SU) block: SU sensitivity of I182V is similar to that of wild-type mutants, but the SU sensitivity of all gating mutants is reduced, with the I296L mutant being resistant to block by tolbutamide (

Asunto(s)
Adenosina Trifosfato/fisiología , Gliburida/farmacología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Canales de Potasio de Rectificación Interna/genética , Tolbutamida/farmacología , Animales , Línea Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Mutación , Farmacogenética
18.
Diabetes ; 53(12): 3159-67, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15561946

RESUMEN

ATP-sensitive K+ channels (K(ATP) channels) control electrical activity in beta-cells and therefore are key players in excitation-secretion coupling. Partial suppression of beta-cell K(ATP) channels in transgenic (AAA) mice causes hypersecretion of insulin and enhanced glucose tolerance, whereas complete suppression of these channels in Kir6.2 knockout (KO) mice leads to hyperexcitability, but mild glucose intolerance. To test the interplay of hyperexcitability and dietary stress, we subjected AAA and KO mice to a high-fat diet. After 3 months on the diet, both AAA and KO mice converted to an undersecreting and markedly glucose-intolerant phenotype. Although Kir6.2 is expressed in multiple tissues, its primary functional consequence in both AAA and KO mice is enhanced beta-cell electrical activity. The results of our study provide evidence that, when combined with dietary stress, this hyperexcitability is a causal diabetic factor. We propose an "inverse U" model for the response to enhanced beta-cell excitability: the expected initial hypersecretion can progress to undersecretion and glucose-intolerance, either spontaneously or in response to dietary stress.


Asunto(s)
Intolerancia a la Glucosa/fisiopatología , Islotes Pancreáticos/fisiopatología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Glucemia/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética
19.
Diabetes ; 52(7): 1695-1700, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12829635

RESUMEN

HIV protease inhibitors (PIs) acutely and reversibly inhibit the insulin-responsive glucose transporter Glut 4, leading to peripheral insulin resistance and impaired glucose tolerance. Minimal modeling analysis of glucose tolerance tests on PI-treated patients has revealed an impaired insulin secretory response, suggesting additional pancreatic beta-cell dysfunction. To determine whether beta-cell function is acutely affected by PIs, we assayed glucose-stimulated insulin secretion in rodent islets and the insulinoma cell line MIN6. Insulin release from MIN6 cells and rodent islets was significantly inhibited by the PI indinavir with IC(50) values of 1.1 and 2.1 micro mol/l, respectively. The uptake of 2-deoxyglucose in MIN6 cells was similarly inhibited (IC(50) of 2.0 micro mol/l), whereas glucokinase activity was unaffected at drug levels as high as 1 mmol/l. Glucose utilization was also impaired at comparable drug levels. Insulin secretogogues acting downstream of glucose transport mostly reversed the indinavir-mediated inhibition of insulin release in MIN6 cells. Intravenous infusion of indinavir during hyperglycemic clamps on rats significantly suppressed the first-phase insulin response. These data suggest that therapeutic levels of PIs are sufficient to impair glucose sensing by beta-cells. Thus, together with peripheral insulin resistance, beta-cell dysfunction likely contributes to altered glucose homeostasis associated with highly active antiretroviral therapy.


Asunto(s)
Glucosa/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Carbamatos , Células Cultivadas , Furanos , Indinavir/farmacología , Insulina/sangre , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Nelfinavir/farmacología , Ritonavir/farmacología , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...