Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 930: 172729, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670353

RESUMEN

Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor. Results from mass spectral analysis and the determination of appearance energies (AEs) indicate that photolysis of PA can generate radicals, then they recombine with carboxylic acids and simple molecular oligomers. Furthermore, the preliminary products could form larger oligomers via radical reaction or esterification in the presence of hydroxyl and carboxyl functional groups. Mass spectral comparison shows that most photochemical reactions would complete within 4 h. The expanded photochemistry-driven reaction flowchart of PA is proposed based on the newly discovered products. Our results reveal that the interfacial PA photochemical reactions have different mechanisms from the bulk liquid due to the interfacial properties, such as molecular density, composition, and ion concentration. Our findings show that in situ mass spectral analysis with bright photon ionization is useful to elucidate the contribution of a-l interfacial reactions leading to aqSOA formation.

2.
J Phys Chem A ; 127(29): 5999-6011, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37441795

RESUMEN

The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O)n) based upon ionization energy and photoionization distance from source, suggesting there are "magic" numbers below the traditional n = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.0-11.5 eV) of neutral water clusters close to the nozzle exit leads to a different nonequilibrium state compared to a skimmed molecular beam. This results in the appearance of a new magic number at 14. Metadynamics conformer searches coupled with modern density functional calculations are used to identify the global minimum energy structures of protonated water clusters between n = 2 and 21, as well as the manifold of low-lying metastable minima. New lowest energy structures are reported for the cases of n = 5, 6, 11, 12, 16, and 18, and special stability is identified by several measures. These theoretical results are in agreement with the experiments performed in this work in that n = 14 is shown to exhibit additional stability, based on the computed second-order stabilization energy relative to most cluster sizes, though not to the extent of the well-known n = 21 cluster. Other cluster sizes that show some additional energetic stability are n = 7, 9, 12, 17, and 19. To gain insight into the balance between ion-water and water-water interactions as a function of the cluster size, an analysis of the effective two-body interactions (which sum exactly to the total interaction energy) was performed. This analysis reveals a crossover as a function of cluster size between a water-hydronium-dominated regime for small clusters and a water-water-dominated regime for larger clusters around n = 17.

3.
J Phys Chem A ; 127(13): 3000-3019, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36897578

RESUMEN

We used aerosol mass spectrometry coupled with tunable synchrotron photoionization to measure radical and closed-shell species associated with particle formation in premixed flames and during pyrolysis of butane, ethylene, and methane. We analyzed photoionization (PI) spectra for the C7H7 radical to identify the isomers present during particle formation. For the combustion and pyrolysis of all three fuels, the PI spectra can be fit reasonably well with contributions from four radical isomers: benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl. Although there are significant experimental uncertainties in the isomeric speciation of C7H7, the results clearly demonstrate that the isomeric composition of C7H7 strongly depends on the combustion or pyrolysis conditions and the fuel or precursors. Fits to the PI spectra using reference curves for these isomers suggest that all of these isomers may contribute to m/z 91 in butane and methane flames, but only benzyl and vinylcyclopentadienyl contribute to the C7H7 isomer signal in the ethylene flame. Only tropyl and benzyl appear to play a role during pyrolytic particle formation from ethylene, and only tropyl, vinylcyclopentadienyl, and o-tolyl appear to participate during particle formation from butane pyrolysis. There also seems to be a contribution from an isomer with an ionization energy below 7.5 eV for the flames but not for the pyrolysis conditions. Kinetic models with updated and new reactions and rate coefficients for the C7H7 reaction network predict benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl to be the primary C7H7 isomers and predict negligible contributions from other C7H7 isomers. These updated models provide better agreement with the measurements than the original versions of the models but, nonetheless, underpredict the relative concentrations of tropyl, vinylcyclopentadienyl, and o-tolyl in both flames and pyrolysis and overpredict benzyl in pyrolysis. Our results suggest that there are additional important formation pathways for the vinylcyclopentadienyl, tropyl, and o-tolyl radicals and/or loss pathways for the benzyl radical that are currently unaccounted for in the present models.

4.
J Phys Chem Lett ; 14(5): 1279-1287, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36720001

RESUMEN

A new generation of electronic cigarettes is exacerbating the youth vaping epidemic by incorporating additives that increase the acidity of generated aerosols, which facilitate uptake of high nicotine levels. We need to better understand the chemical speciation of vaping aerosols to assess the impact of acidification. Here we used X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to probe the acid-base equilibria of nicotine in hydrated vaping aerosols. We show that, unlike the behavior observed in bulk water, nicotine in the core of aqueous particles was partially protonated when the pH of the nebulized solution was 10.4, with a fraction of free-base nicotine (αFB) of 0.34. Nicotine was further protonated by acidification with equimolar addition of benzoic acid (αFB = 0.17 at pH 6.2). By contrast, the degree of nicotine protonation at the particle surface was significantly lower, with 0.72 < αFB < 0.80 in the same pH range. The presence of propylene glycol and glycerol completely eliminated protonation of nicotine at the surface (αFB = 1) while not affecting significantly its acid-base equilibrium in the particle core. These results provide a better understanding of the role of acidifying additives in vaping aerosols, supporting public health policy interventions.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Nicotina/química , Rayos X , Aerosoles/química , Análisis Espectral
5.
Phys Chem Chem Phys ; 24(38): 23106-23118, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35975620

RESUMEN

Water-cluster interactions with polycyclic aromatic hydrocarbons (PAHs) are of paramount interest in many chemical and biological processes. We report a study of anthracene monomers and dimers with water (up to four)-cluster systems utilizing molecular beam vacuum-UV photoionization mass spectrometry and density functional calculations. Structural loss in photoionization efficiency curves when adding water indicates that various isomers are generated, while theory indicates only a slight shift in energy in photoionization states of different isomers. Calculations reveal that the energetic tendency of water is to remain clustered and not to disperse around the PAH. Theoretically, we observe water confinement exclusively in the case of four water clusters and only when the anthracenes are in a cross configuration due to optimal OH⋯π interactions, indicating dependence on the size and structure of the PAH. Furthermore theory sheds light on the structural changes that occur in water upon ionization of anthracene, due to the optimal interactions of the resulting hole and water hydrogen atoms.

6.
J Phys Chem A ; 126(3): 373-394, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35014846

RESUMEN

To develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO3. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.45 eV) photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS). Next, the investigation into the thermal and catalytic decomposition of HEHN includes two mass spectrometric techniques: (1) tunable VUV-PI-TOFMS (7.4-15 eV) and (2) ambient ionization mass spectrometry utilizing both plasma and laser ionization techniques whereby HEHN is introduced onto a heated inert or iridium catalytic surface and the products are probed. The products can be identified by their masses, their ionization energies, and their collision-induced fragmentation patterns. Formation of product species indicates that catalytic surface recombination is an important reaction process in the decomposition mechanism of HEHN. The products and their possible elementary reaction mechanisms are discussed.

7.
Phys Chem Chem Phys ; 23(10): 5740-5749, 2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33595573

RESUMEN

Fullerenes (C60, C70) detected in planetary nebulae and carbonaceous chondrites have been implicated to play a key role in the astrochemical evolution of the interstellar medium. However, the formation mechanism of even their simplest molecular building block-the corannulene molecule (C20H10)-has remained elusive. Here we demonstrate via a combined molecular beams and ab initio investigation that corannulene can be synthesized in the gas phase through the reactions of 7-fluoranthenyl (C16H9˙) and benzo[ghi]fluoranthen-5-yl (C18H9˙) radicals with acetylene (C2H2) mimicking conditions in carbon-rich circumstellar envelopes. This reaction sequence reveals a reaction class in which a polycyclic aromatic hydrocarbon (PAH) radical undergoes ring expansion while simultaneously forming an out-of-plane carbon backbone central to 3D nanostructures such as buckybowls and buckyballs. These fundamental reaction mechanisms are critical in facilitating an intimate understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our galaxy.

8.
J Phys Chem Lett ; 12(1): 324-329, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33352051

RESUMEN

Air-liquid interfacial processing of volatile organic compound photooxidation has been suggested as an important source of secondary organic aerosols. However, owing to the lack of techniques for studying the air-liquid interface, the detailed interfacial mechanism remains speculative. To obviate this, we enabled in situ synchrotron-based vacuum ultraviolet single photon ionization mass spectrometry using the system for analysis at the liquid-vacuum interface microreactor to study glyoxal photooxidation at the air-liquid interface. Determination of reaction intermediates and new oxidation products, including polymers and oligomers, by mass spectral analysis and appearance energy measurements has been reported for the first time. Furthermore, an expanded reaction mechanism of photooxidation and free radical induced reactions as a source of aqueous secondary organic aerosol formation is proposed. Single photon ionization can provide new insights into interfacial chemistry.

9.
J Phys Chem Lett ; 11(21): 9507-9514, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33108726

RESUMEN

A study of the formation of microstructures in the reaction of oleic acid with arginine elucidates dynamical self-assembly processes at the molecular level. Terahertz spectroscopy combined with density functional calculations reveals the initial hydrogen-bonding motifs in the assembly process, leading to the formation of micelles and vesicles. Small-angle X-ray scattering measurements allow for kinetic analysis of the growth processes of these nanostructures, revealing a prenucleation pathway of vesicles and micelles which lead to spongelike structures. This final stage of the assembly into spongelike aggregates is investigated with optical microscopy. The formed structures only occur at pH > 8 and are resistant to extreme acidic and basic conditions. A mechanistic pathway to the formation of the spongelike aggregates is described.

10.
Phys Chem Chem Phys ; 22(39): 22493-22500, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32996974

RESUMEN

The tricyclic polycyclic aromatic hydrocarbons (PAHs) 3H-cyclopenta[a]naphthalene (C13H10), 1H-cyclopenta[b]naphthalene (C13H10) and 1H-cyclopenta[a]naphthalene (C13H10) along with their indene-based bicyclic isomers (E)-5-(but-1-en-3-yn-1-yl)-1H-indene, (E)-6-(but-1-en-3-yn-1-yl)-1H-indene, 5-(but-3-ene-1-yn-1-yl)-1H-in-dene, and 6-(but-3-ene-1-yn-1-yl)-1H-indene were formed via a "directed synthesis" in a high-temperature chemical micro reactor at the temperature of 1300 ± 10 K through the reactions of the 5- and 6-indenyl radicals (C9H7˙) with vinylacetylene (C4H4). The isomer distributions were probed utilizing tunable vacuum ultraviolet light by recording the photoionization efficiency curves at mass-to-charge of m/z = 166 (C13H10) and 167 (13CC12H10) of the products in a supersonic molecular beam. The underlying reaction mechanisms involve the initial formation of van-der-Waals complexes followed by addition of the 5- and 6-indenyl radicals to vinylacetylene via submerged barriers, followed by isomerization (hydrogen shifts, ring closures), and termination via atomic hydrogen elimination accompanied by aromatization. All the barriers involved in the formation of 3H-cyclopenta[a]naphthalene, 1H-cyclopenta[b]naphthalene and 1H-cyclopenta[a]naphthalene are submerged with respect to the reactants indicating that the mechanisms are in fact barrierless, potentially forming PAHs via the hydrogen abstraction - vinylacetylene addition (HAVA) pathway in the cold molecular clouds such as Taurus Molecular Cloud-1 (TMC-1) at temperatures as low as 10 K.

11.
Phys Chem Chem Phys ; 22(25): 14284-14292, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32555897

RESUMEN

Electronic excitation and concomitant energy transfer leading to Penning ionization in argon-acetylene clusters generated in a supersonic expansion are investigated with synchrotron-based photoionization mass spectrometry and electronic structure calculations. Spectral features in the photoionization efficiency of the mixed argon-acetylene clusters reveal a blue shift from the 2P1/2 and 2P3/2 excited states of atomic argon. Analysis of this feature suggests that excited states of argon clusters transfer energy to acetylene, resulting in its ionization and successive evaporation of argon. Theoretically calculated Arn (n = 2-6) cluster spectra are in excellent agreement with experimental observations, and provide insight into the structure and ionization dynamics of the clusters. A comparison between argon-acetylene and argon-water clusters reveals that argon solvates water better, allowing for higher-order excitons and Rydberg states to be populated. These results are explained by theoretical calculations of respective binding energies and structures.

12.
Phys Chem Chem Phys ; 22(26): 14449-14453, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32582899

RESUMEN

We present synchrotron-based mass spectrometry to probe products formed in a lithium sulphide electrolyte. In operando analysis was carried out at two different potentials in a vacuum compatible microfluidic electrochemical cell. Mass spectral observations show that the charged electrolyte formed sulphur clusters under dynamic conditions, demonstrating electrolyte electron shuttling.

13.
Phys Chem Chem Phys ; 22(5): 2713-2737, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31960853

RESUMEN

Tunable synchrotron radiation provides a universal yet selective scalpel to decipher molecular information in complex chemical systems when coupled to mass spectrometry and X-ray spectroscopy. At the Chemical Dynamics Beamline, the radiation emanating from the Advanced Light Source at Berkeley has been utilized by physical chemists and chemical physicists to probe chemical reactivity, energetics and spectroscopy for over two decades. Emerging themes are the study of molecular growth mechanisms, solvation, electronic structure and reactivity in clusters, complexes and nanoparticles. The ion-induced and neutral growth mechanisms in methanol and acetylene clusters are revealed by vacuum ultraviolet (VUV) single photon ionization mass spectrometry. The photoionization dynamics of glycerol show signatures of strong ionic hydrogen bonds, non-covalent interactions are explored in naphthalene water clusters, proton transfer pathways are revealed in acetaldehyde water clusters, and exciton charge transfer is probed in argon water clusters. X-ray spectroscopy provides a local probe of a sample's electronic structure with elemental and site-specificity and is thus ideally suited for probing solvation. Velocity map imaging X-ray photoelectron spectroscopy coupled to nanoparticle beams that allows for the visualization of dynamic processes in solvation and molecular growth processes is described. This technique is used to probe reactivity in aerosol chemistry, obtain phase and pH dependent information on aqueous nanoparticles and electron scattering cross-sections from hydrocarbon nanoparticles. We describe future opportunities in probing elusive radicals such as the cyclic 3,5-dehydroxyphenyl radical cation and excited states in water clusters formed in VUV photoionization, explore reactivity in confined spaces via X-ray spectroscopy and elucidate time dynamics with laser-synchrotron pump probe experiments.

14.
J Phys Chem A ; 123(28): 6034-6044, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31283250

RESUMEN

For aerosol particles that exist in highly viscous, diffusion-limited states, steep chemical gradients are expected to form during photochemical aging in the atmosphere. Under these conditions, species at the aerosol surface are more rapidly transformed than molecules residing in the particle interior. To examine the formation and evolution of chemical gradients at aerosol interfaces, the heterogeneous reaction of hydroxyl radicals (OH) on ∼200 nm particles of pure squalane (a branched, liquid hydrocarbon) and octacosane (a linear, solid hydrocarbon) and binary mixtures of the two are used to understand how diffusion limitations and phase separation impact the particle reactivity. Aerosol mass spectrometry is used to measure the effective heterogeneous OH uptake coefficient (γeff) and oxidation kinetics in the bulk, which are compared with the elemental composition of the surface obtained using X-ray photoemission. When diffusion rates are fast relative to the reaction frequency, as is the case for squalane and low-viscosity squalane-octacosane mixtures, the reaction is efficient (γeff ∼ 0.3) and only limited by the arrival of OH to the interface. However, for cases, where the diffusion rates are slower than reaction rates, as in pure octacosane and higher-viscosity squalane-octacosane mixtures, the heterogeneous reaction occurs in a mixing-limited regime and is ∼10× slower (γeff ∼ 0.03). This is in contrast to carbon and oxygen K edge X-ray absorption measurements that show that the octacosane interface is oxidized much more rapidly than that of pure squalane particles. The O/C ratio of the surface (estimated to be the top 6-8 nm of the interface) is measured to change with rate constants of (3.0 ± 0.9) × 10-13 and (8.6 ± 1.2) × 10-13 cm3 molecule-1 s-1 for squalane and octacosane particles, respectively. The differences in surface oxidation rates are analyzed using a previously published reaction-diffusion model, which suggests that a 1-2 nm highly oxidized crust forms on octacosane particles, whereas in pure squalane, the reaction products are homogeneously mixed within the aerosol. This work illustrates how diffusion limitations can form particles with highly oxidized surfaces even at relatively low oxidant exposures, which is in turn expected to influence their microphysics in the atmosphere.

15.
J Phys Chem Lett ; 10(8): 1860-1865, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30933520

RESUMEN

Application of photoionization mass spectroscopy, a technique capable of assessing protonation states in complex molecules in the gas phase, is challenging for arginine due to its fragility. We report photoionization efficiencies in the valence region of aqueous aerosol particles produced from arginine solutions under various pH and vaporization conditions. By using ab initio calculations, we investigate the stability of different conformers. Our results show that neutral arginine fragments upon ionization in the gas phase but solvation stabilizes the molecular ion, resulting in different photoionization dynamics. We also report the valence-band photoelectron spectra of the aerosol solutions obtained at different pH values.

16.
J Phys Chem A ; 123(11): 2194-2202, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30807163

RESUMEN

Reaction of gold atoms with acetylene and ethylene in a laser ablation source produces a number of gold-containing species. Their photoionization efficiency (PIE) curves are measured using tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. Their structures are assigned by comparing the experimental ionization energies and PIE curves to those of potential isomers calculated at the CAM-B3LYP/aug-cc-pVTZ level. For smaller molecules, the contribution of ionization to excited electronic states of the cation is also included using photoionization cross sections calculated using ePolyScat. Reaction with acetylene produces adducts Au(C2H2) and Au(C2H2)2, as well as HAu(C4H2). Reaction with ethylene leads to adducts Au(C2H4), Au(C2H4)2, an adduct with a gold dimer, Au2(C2H4), as well as the gold hydrides AuH, HAu(C2H4), and HAu(C4H4). [Au,C4,H7] is also observed, and it likely corresponds to a gold alkyl, H2C═C(H)-Au(C2H4). Reactions leading to production of odd-hydrogen species are endothermic and are likely due to translationally or electronically excited gold atoms. These measurements provide the first directly measured ionization energy for gold hydride, IE(AuH) = 10.25 ± 0.05 eV. Combining this value with the dissociation energy of AuH+ gives a dissociation energy D0(AuH) = 3.15 ± 0.12 eV. Several other ionization energies are measured: IE(Au2(C2H4)) = 8.42 ± 0.05 eV, IE(HAu(C2H4)) = 9.35 ± 0.05 eV, IE(HAu(C4H2)) = 8.8 ± 0.1 eV, and IE(HAu(C4H4)) = 8.8 ± 0.1 eV.

17.
J Chem Phys ; 149(15): 154305, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30342450

RESUMEN

New photoresists are needed to advance extreme ultraviolet (EUV) lithography. The tailored design of efficient photoresists is enabled by a fundamental understanding of EUV induced chemistry. Processes that occur in the resist film after absorption of an EUV photon are discussed, and a new approach to study these processes on a fundamental level is described. The processes of photoabsorption, electron emission, and molecular fragmentation were studied experimentally in the gas-phase on analogs of the monomer units employed in chemically amplified EUV resists. To demonstrate the dependence of the EUV absorption cross section on selective light harvesting substituents, halogenated methylphenols were characterized employing the following techniques. Photoelectron spectroscopy was utilized to investigate kinetic energies and yield of electrons emitted by a molecule. The emission of Auger electrons was detected following photoionization in the case of iodo-methylphenol. Mass-spectrometry was used to deduce the molecular fragmentation pathways following electron emission and atomic relaxation. To gain insight on the interaction of emitted electrons with neutral molecules in a condensed film, the fragmentation pattern of neutral gas-phase molecules, interacting with an electron beam, was studied and observed to be similar to EUV photon fragmentation. Below the ionization threshold, electrons were confirmed to dissociate iodo-methylphenol by resonant electron attachment.

18.
Phys Chem Chem Phys ; 19(20): 13372-13378, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28492688

RESUMEN

A velocity map imaging spectrometer is used to measure photoemission from free core-shell nanoparticles, where a salt core is coated with a liquid hydrocarbon shell (i.e. squalane). By varying the radial thickness of the hydrocarbon shell, electron attenuation lengths (EALs) are determined by measuring the decay in photoemission intensity from the salt core. In squalane, electrons with kinetic energy (KE) above 2 eV are found to have EALs of 3-5 nm, whereas electrons with smaller KE (<2 eV) have significantly larger EALs of >15 nm. These results (in the context of other energy-resolved EAL measurements) suggest that the energy dependent behavior of low energy electrons is similar in dielectrics when KE > 2 eV. At this energy the EALs do not appear to exhibit strong energy dependence. However, at very low KE (<2 eV), the EALs diverge and appear to be extremely material dependent.

19.
Proc Natl Acad Sci U S A ; 114(21): E4125-E4133, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484019

RESUMEN

The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2) n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

20.
Angew Chem Int Ed Engl ; 56(16): 4515-4519, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28328095

RESUMEN

The hydrogen-abstraction/acetylene-addition (HACA) mechanism has been central for the last decades in attempting to rationalize the formation of polycyclic aromatic hydrocarbons (PAHs) as detected in carbonaceous meteorites such as in Murchison. Nevertheless, the basic reaction mechanisms leading to the formation of even the simplest tricyclic PAHs like anthracene and phenanthrene are still elusive. Here, by exploring the previously unknown chemistry of the ortho-biphenylyl radical with acetylene, we deliver compelling evidence on the efficient synthesis of phenanthrene in carbon-rich circumstellar environments. However, the lack of formation of the anthracene isomer implies that HACA alone cannot be responsible for the formation of PAHs in extreme environments. Considering the overall picture, alternative pathways such as vinylacetylene-mediated reactions are required to play a crucial role in the synthesis of complex PAHs in circumstellar envelopes of dying carbon-rich stars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...