Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med ; 65: 181-190, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31494372

RESUMEN

PURPOSE: The purpose of this study is to create an organ dose database for pediatric individuals undergoing chest, abdomen/pelvis, and head computed tomography (CT) examinations, and to report the differences in absorbed organ doses, when anatomical differences exist for pediatric patients. METHODS: The GATE Monte Carlo (MC) toolkit was used to model the GE BrightSpeed Elite CT model. The simulated scanner model was validated with the standard Computed Tomography Dose Index (CTDI) head phantom. Twelve computational models (2.1-14 years old) were used. First, contributions to effective dose and absorbed doses per CTDIvol and per 100 mAs were estimated for all organs. Then, doses per CTDIvol were correlated with patient model weight for the organs inside the scan range for chest and abdomen/pelvis protocols. Finally, effective doses per dose-length product (DLP) were estimated and compared with the conventional conversion k-factors. RESULTS: The system was validated against experimental CTDIw measurements. The doses per CTDIvol and per 100 mAs for selected organs were estimated. The magnitude of the dependency between the dose and the anatomical characteristics was calculated with the coefficient of determination at 0.5-0.7 for the internal scan organs for chest and abdomen/pelvis protocols. Finally, effective doses per DLP were compared with already published data, showing discrepancies between 13 and 29% and were correlated strongly with the total weight (R2 > 0.8) for the chest and abdomen protocols. CONCLUSIONS: Big differences in absorbed doses are reported even for patients of similar age or same gender, when anatomical differences exist on internal organs of the body.


Asunto(s)
Tamaño Corporal , Método de Montecarlo , Dosis de Radiación , Tomografía Computarizada por Rayos X , Abdomen/diagnóstico por imagen , Adolescente , Niño , Preescolar , Femenino , Cabeza/diagnóstico por imagen , Humanos , Masculino , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Tórax/diagnóstico por imagen
2.
Med Phys ; 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29920693

RESUMEN

PURPOSE: Herein, we introduce a methodology for estimating the absorbed dose in organs at risk that is based on specified clinically derived radiopharmaceutical biodistributions and personalized anatomical characteristics. METHODS: To evaluate the proposed methodology, we used realistic Monte Carlo (MC) simulations and computational pediatric models to calculate a parameter called in this work the "specific absorbed dose rate" (SADR). The SADR is a unique quantitative metric in that it is specific to a particular organ. It is defined as the absorbed dose rate in an organ when the biodistribution of radioactivity over the whole body is considered. Initially, we applied a validation procedure that calculated specific absorbed fractions (SAFs) from mono-energetic photon sources in the range of 10 keV-2 MeV and compared them with previously published data. We calculated the SADRs for five different radiopharmaceuticals (99m Tc-MDP, 123 I-mIBG, 131 I-MIBG, 131 I-NaI, and 153 Sm-EDTMP) based on their biodistributions at four or five different times; the biodistributions were derived from the clinical scintigraphic data of pediatric patients. We used six models representing male and female patients aged 5, 8, and 14 yr to investigate the absorbed dose variability due to anatomical variations. The GATE Monte Carlo toolkit was used to calculate absorbed doses per organ. Finally, we compared the SADR methodology to that of OLINDA/EXM 1.1 using rescaled masses according to the studied models. Four target organs were considered for calculating the absorbed doses. RESULTS: The ratios of SAFs calculated with GATE simulations to those based on previously published data were between 0.9 and 2.2 when the liver was used as a source organ. Subsequently, we used GATE to calculate a dataset of SADRs for the six pediatric models. The SADRs for pediatric models whose total body weights ranged from 20 to 40 kg varied up to approximately 90%, whereas those for models of similar body masses varied less than 15%. Finally, we found absorbed dose discrepancies of approximately 10-150% between the SADR methodology and OLINDA for two different radiopharmaceuticals. Absorbed doses from SADRs and from individualized S-values in the same pediatric model differed approximately 1-50%. CONCLUSIONS: Because pediatric radiopharmaceutical dosimetric estimates demonstrate large variation due to the patient's anatomical characteristics, personalized data should be considered. Using our SADR method in a larger population of phantoms and for a variety of radiopharmaceuticals could enhance the personalization of dosimetry in pediatric nuclear medicine. The proposed methodology provides the advantage of creating time-dependent organ dose rate curves.

4.
Eur Psychiatry ; 50: 7-20, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358016

RESUMEN

Simultaneous PET/MR/EEG (Positron Emission Tomography - Magnetic Resonance - Electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here within the framework of the European Union Project TRIMAGE. The trimodal, cost-effective PET/MR/EEG imaging tool makes use of cutting edge technology both in PET and in MR fields. A novel type of magnet (1.5T, non-cryogenic) has been built together with a PET scanner that makes use of the most advanced photodetectors (i.e., SiPM matrices), scintillators matrices (LYSO) and digital electronics. The combined PET/MR/EEG system is dedicated to brain imaging and has an inner diameter of 260 mm and an axial Field-of-View of 160 mm. It enables the acquisition and assessment of molecular metabolic information with high spatial and temporal resolution in a given brain simultaneously. The dopaminergic system and the glutamatergic system in schizophrenic patients are investigated via PET, the same physiological/pathophysiological conditions with regard to functional connectivity, via fMRI, and its electrophysiological signature via EEG. In addition to basic neuroscience questions addressing neurovascular-metabolic coupling, this new methodology lays the foundation for individual physiological and pathological fingerprints for a wide research field addressing healthy aging, gender effects, plasticity and different psychiatric and neurological diseases. The preliminary performances of two components of the imaging tool (PET and MR) are discussed. Initial results of the search of possible candidates for suitable schizophrenia biomarkers are also presented as obtained with PET/MR systems available to the collaboration.


Asunto(s)
Encéfalo/diagnóstico por imagen , Electroencefalografía/métodos , Espectroscopía de Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Esquizofrenia/diagnóstico por imagen , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad
5.
Phys Med Biol ; 61(6): 2333-55, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26930000

RESUMEN

Nuclear medicine and radiation therapy, although well established, are still rapidly evolving, by exploiting animal models, aiming to define precise dosimetry in molecular imaging protocols. The purpose of the present study was to create a dataset based on the MOBY phantom for the calculation of organ-to-organ S-values of commonly used radionuclides. S-values of most crucial organs were calculated using specific biodistributions with a whole-body heterogeneous source. In order to determine the impact of the varying organs' size on the S-values, and based on the fact that the anatomic properties of the organs are correlated with S-values, dosimetric calculations were performed by simulating the MOBY-version 2 model with different whole-body masses. The GATE Monte Carlo simulation toolkit was used for all simulations. Two mouse models of different body masses were developed to calculate the S-values of eight commonly used radioisotopes in nuclear imaging studies, namely (18)F, (68)Ga, (131)I, (111)In, (177)Lu, and (99m)Tc, (90)Y and (188)Re. The impact of modified mass of the source organs in S-values was investigated with (18)F, and (90)Y in five different scalings of the source organs. Based on realistic preclinical exams, three mouse models, 22, 28 and 34 g, were used as input in the GATE simulator based on realistic preclinical exams to calculate the S-values of the six radioisotopes used. Whole body activity distributions were used as the source organ. The simulation procedure was validated in terms of extracting individual organ-to-organ S-values, and consequently in calculating the new S-values using a heterogeneous activity distribution as a source. The calculation was validated with (18)F source in a 30 g mouse model. For the generation of the new S-values with heterogeneous activity sources, four organs were used for the calculation of a single S-value. The absorbed doses per organ were compared with previously published reports. The validation procedure of (18)F indicates discrepancies, ranging from 5.32 to 7.72%. The S-values in Gy/(Bq·s), with the corresponding uncertainties of all simulated cases, are given in the developed dataset. The comparison of the dosimetric calculations on the three different phantoms highlights the impact of the mouse model size on the calculated S-values. The developed dataset can be used to improve the accuracy of the absorbed dose calculations in small animal dosimetry and depict the crucial impact the mouse size has on S-values' calculation. The generated S-values dataset for different radiopharmaceuticals contributes to the estimation of radiation dose to mice in small animal PET and SPECT exams. Finally, the detailed methodology of the procedure is provided.


Asunto(s)
Dosis de Radiación , Radiofármacos/efectos adversos , Animales , Ratones , Método de Montecarlo , Tamaño de los Órganos , Especificidad de Órganos , Órganos en Riesgo/efectos de la radiación , Fantasmas de Imagen , Radiofármacos/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA