Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insights Imaging ; 14(1): 189, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962712

RESUMEN

OBJECTIVES: The aim of the study was to investigate computed tomography-based thermography (CTT) for ablation zone prediction in microwave ablation (MWA). METHODS: CTT was investigated during MWA in an in vivo porcine liver. For CTT, serial volume scans were acquired every 30 s during ablations and every 60 s immediately after MWA. After the procedure, contrast-enhanced computed tomography (CECT) was performed. After euthanasia, the liver was removed for sampling and further examination. Color-coded CTT maps were created for visualization of ablation zones, which were compared with both CECT and macroscopy. Average CT attenuation values in Hounsfield units (HU) were statistically correlated with temperatures using Spearman's correlation coefficient. CTT was retrospectively evaluated in one patient who underwent radiofrequency ablation (RFA) treatment of renal cell carcinoma. RESULTS: A significant correlation between HU and temperature was found with r = - 0.77 (95% confidence interval (CI), - 0.89 to - 0.57) and p < 0.001. Linear regression yielded a slope of - 1.96 HU/°C (95% CI, - 2.66 to - 1.26). Color-coded CTT maps provided superior visualization of ablation zones. CONCLUSION: Our results show that CTT allows visualization of the ablation area and measurement of its size and is feasible in patients, encouraging further exploration in a clinical setting. CRITICAL RELEVANCE STATEMENT: CT-based thermography research software allows visualization of the ablation zone and is feasible in patients, encouraging further exploration in a clinical setting to assess risk reduction of local recurrence.

2.
Diagnostics (Basel) ; 13(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370971

RESUMEN

Computed tomography (CT)-based Thermography (CTT) is currently being investigated as a non-invasive temperature monitoring method during ablation procedures. Since multiple CT scans with defined time intervals were acquired during this procedure, interscan motion artifacts can occur between the images, so registration is required. The aim of this study was to investigate different registration algorithms and their combinations for minimizing inter-scan motion artifacts during thermal ablation. Four CTT datasets were acquired using microwave ablation (MWA) of normal liver tissue performed in an in vivo porcine model. During each ablation, spectral CT volume scans were sequentially acquired. Based on initial reconstructions, rigid or elastic registration, or a combination of these, were carried out and rated by 15 radiologists. Friedman's test was used to compare rating results in reader assessments and revealed significant differences for the ablation probe movement rating only (p = 0.006; range, 5.3-6.6 points). Regarding this parameter, readers assessed rigid registration as inferior to other registrations. Quantitative analysis of ablation probe movement yielded a significantly decreased distance for combined registration as compared with unregistered data. In this study, registration was found to have the greatest influence on ablation probe movement, with connected registration being superior to only one registration process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...