Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 16(1): 13, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357852

RESUMEN

BACKGROUND: The bone morphogenetic protein (BMP) signaling gradient is central for dorsoventral patterning in amphibian embryos. This gradient is established through the interaction of several BMPs and BMP antagonists and modulators, some secreted by Spemann's organizer, a cluster of cells coordinating embryonic development. Anti-dorsalizing morphogenetic protein (ADMP), a BMP-like transforming growth factor beta ligand, negatively affects the formation of the organizer, although it is robustly expressed within the organizer itself. Previously, we proposed that this apparent discrepancy may be important for the ability of ADMP to scale the BMP gradient with embryo size, but how this is achieved is unclear. RESULTS: Here we report that ADMP acts in the establishment of the organizer via temporally and mechanistically distinct signals. At the onset of gastrulation, ADMP is required to establish normal organizer-specific gene expression domains, thus displaying a dorsal, organizer-promoting function. The organizer-restricting, BMP-like function of ADMP becomes apparent slightly later, from mid-gastrula. The organizer-promoting signal of ADMP is mediated by the activin A type I receptor, ACVR1 (also known as activin receptor-like kinase-2, ALK2). ALK2 is expressed in the organizer and is required for organizer establishment. The anti-organizer function of ADMP is mediated by ACVRL1 (ALK1), a putative ADMP receptor expressed in the lateral regions flanking the organizer that blocks expansion of the organizer. Truncated ALK1 prevents the organizer-restricting effects of ADMP overexpression, suggesting a ligand-receptor interaction. We also present a mathematical model of the regulatory network controlling the size of the organizer. CONCLUSIONS: We show that the opposed, organizer-promoting and organizer-restricting roles of ADMP are mediated by different receptors. A self-regulating network is proposed in which ADMP functions early through ALK2 to expand its own expression domain, the organizer, and later functions through ALK1 to restrict this domain. These effects are dependent on ADMP concentration, timing, and the spatial localization of the two receptors. This self-regulating temporal switch may control the size of the organizer and the genes expressed within in response to genetic and external stimuli during gastrulation.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Organizadores Embrionarios/fisiología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animales , Proteínas Morfogenéticas Óseas/análisis , Organizadores Embrionarios/química , Proteínas de Xenopus/análisis , Xenopus laevis
2.
Biochem Cell Biol ; 96(2): 77-87, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29069552

RESUMEN

Vertebrate model systems are central to characterize the outcomes of ethanol exposure and the etiology of fetal alcohol spectrum disorder (FASD), taking advantage of their genetic and morphological closeness and similarity to humans. We discuss the contribution of amphibian embryos to FASD research, focusing on Xenopus embryos. The Xenopus experimental system is characterized by external development and accessibility throughout embryogenesis, large clutch sizes, gene and protein activity manipulation, transgenesis and genome editing, convenient chemical treatment, explants and conjugates, and many other experimental approaches. Taking advantage of these methods, many insights regarding FASD have been obtained. These studies characterized the malformations induced by ethanol including quantitative analysis of craniofacial malformations, induction of fetal growth restriction, delay in gut maturation, and defects in the differentiation of the neural crest. Mechanistic, biochemical, and molecular studies in Xenopus embryos identified early gastrula as the high alcohol sensitivity window, targeting the embryonic organizer and inducing a delay in gastrulation movements. Frog embryos have also served to demonstrate the involvement of reduced retinoic acid production and an increase in reactive oxygen species in FASD. Amphibian embryos have helped pave the way for our mechanistic, molecular, and biochemical understanding of the etiology and pathophysiology of FASD.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Embrionario , Trastornos del Espectro Alcohólico Fetal/metabolismo , Teratogénesis , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/patología , Trastornos del Espectro Alcohólico Fetal/patología , Xenopus laevis
3.
Dev Dyn ; 240(4): 796-807, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21360791

RESUMEN

Gastrulation marks the onset of germ layer formation from undifferentiated precursor cells maintained by a network including the Pou5f1 gene, Oct3/4. Negative regulation of the undifferentiated state is a prerequisite for germ layer formation and subsequent development. A novel cross-regulatory network was characterized including the Pou5f1 and Cdx1 genes as part of the signals controlling the onset of gastrulation. Of particular interest was the observation that, preceding gastrulation, the Xenopus Oct3/4 factors, Oct60, Oct25, and Oct91, positively regulate Cdx1 expression through FGF signaling, and during gastrulation the Oct3/4 factors become repressors of Cdx1. Cdx1 negatively regulates the Pou5f1 genes during gastrulation, thus contributing to the repression of the network maintaining the undifferentiated state and promoting the onset of gastrulation. These regulatory interactions suggest that Oct3/4 initiates its own negative autoregulation through Cdx1 up-regulation to begin the repression of pluripotency in preparation for the onset of gastrulation and germ layer differentiation.


Asunto(s)
Gastrulación/genética , Proteínas de Homeodominio/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Proteínas de Xenopus/fisiología , Animales , Animales Modificados Genéticamente , Factor de Transcripción CDX2 , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Regulación hacia Abajo/genética , Técnicas de Cultivo de Embriones , Embrión no Mamífero , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Modelos Biológicos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Tiempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
Dis Model Mech ; 2(5-6): 295-305, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19380308

RESUMEN

Human embryos exposed to alcohol (ethanol) develop a complex developmental phenotype known as fetal alcohol spectrum disorder (FASD). In Xenopus embryos, ethanol reduces the levels of retinoic acid (RA) signaling during gastrulation. RA, a metabolite of vitamin A (retinol), is required for vertebrate embryogenesis, and deviation from its normal levels results in developmental malformations. Retinaldehyde dehydrogenase 2 (RALDH2) is required to activate RA signaling at the onset of gastrulation. We studied the effect of alcohol on embryogenesis by manipulating retinaldehyde dehydrogenase activity in ethanol-treated embryos. In alcohol-treated embryos, we analyzed RA signaling levels, phenotypes induced and changes in gene expression. Developmental defects that were characteristic of high ethanol concentrations were phenocopied by a low ethanol concentration combined with partial RALDH inhibition, whereas Raldh2 overexpression rescued the developmental malformations induced by high ethanol. RALDH2 knockdown resulted in similar RA signaling levels when carried out alone or in combination with ethanol treatment, suggesting that RALDH2 is the main target of ethanol. The biochemical evidence that we present shows that, at the onset of RA signaling during early gastrulation, the ethanol effect centers on the competition for the available retinaldehyde dehydrogenase activity. In light of the multiple regulatory roles of RA, continued embryogenesis in the presence of abnormally low RA levels provides an etiological explanation for the malformations observed in individuals with FASD.


Asunto(s)
Aldehído Oxidasa/metabolismo , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Etanol/toxicidad , Gastrulación/efectos de los fármacos , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidasa/genética , Animales , Embrión no Mamífero/enzimología , Gástrula/anomalías , Gástrula/efectos de los fármacos , Gástrula/enzimología , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Organizadores Embrionarios/efectos de los fármacos , Organizadores Embrionarios/enzimología , Fenotipo , Retinal-Deshidrogenasa , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Xenopus/genética , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA