Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5366, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926387

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.


Asunto(s)
Adenosina Desaminasa , Adenosina , Autopsia , Encéfalo , Inosina , Edición de ARN , Proteínas de Unión al ARN , Humanos , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Encéfalo/metabolismo , Inosina/metabolismo , Inosina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Corteza Prefrontal/metabolismo , Cambios Post Mortem , Masculino
2.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38765961

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

3.
medRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798344

RESUMEN

The prefrontal cortex (PFC) is a region of the brain that in humans is involved in the production of higher-order functions such as cognition, emotion, perception, and behavior. Neurotransmission in the PFC produces higher-order functions by integrating information from other areas of the brain. At the foundation of neurotransmission, and by extension at the foundation of higher-order brain functions, are an untold number of coordinated molecular processes involving the DNA sequence variants in the genome, RNA transcripts in the transcriptome, and proteins in the proteome. These "multiomic" foundations are poorly understood in humans, perhaps in part because most modern studies that characterize the molecular state of the human PFC use tissue obtained when neurotransmission and higher-order brain functions have ceased (i.e., the postmortem state). Here, analyses are presented on data generated for the Living Brain Project (LBP) to investigate whether PFC tissue from individuals with intact higher-order brain function has characteristic multiomic foundations. Two complementary strategies were employed towards this end. The first strategy was to identify in PFC samples obtained from living study participants a signature of RNA transcript expression associated with neurotransmission measured intracranially at the time of PFC sampling, in some cases while participants performed a task engaging higher-order brain functions. The second strategy was to perform multiomic comparisons between PFC samples obtained from individuals with intact higher-order brain function at the time of sampling (i.e., living study participants) and PFC samples obtained in the postmortem state. RNA transcript expression within multiple PFC cell types was associated with fluctuations of dopaminergic, serotonergic, and/or noradrenergic neurotransmission in the substantia nigra measured while participants played a computer game that engaged higher-order brain functions. A subset of these associations - termed the "transcriptional program associated with neurotransmission" (TPAWN) - were reproduced in analyses of brain RNA transcript expression and intracranial neurotransmission data obtained from a second LBP cohort and from a cohort in an independent study. RNA transcripts involved in TPAWN were found to be (1) enriched for RNA transcripts associated with measures of neurotransmission in rodent and cell models, (2) enriched for RNA transcripts encoded by evolutionarily constrained genes, (3) depleted of RNA transcripts regulated by common DNA sequence variants, and (4) enriched for RNA transcripts implicated in higher-order brain functions by human population genetic studies. In PFC excitatory neurons of living study participants, higher expression of the genes in TPAWN tracked with higher expression of RNA transcripts that in rodent PFC samples are markers of a class of excitatory neurons that connect the PFC to deep brain structures. TPAWN was further reproduced by RNA transcript expression patterns differentiating living PFC samples from postmortem PFC samples, and significant differences between living and postmortem PFC samples were additionally observed with respect to (1) the expression of most primary RNA transcripts, mature RNA transcripts, and proteins, (2) the splicing of most primary RNA transcripts into mature RNA transcripts, (3) the patterns of co-expression between RNA transcripts and proteins, and (4) the effects of some DNA sequence variants on RNA transcript and protein expression. Taken together, this report highlights that studies of brain tissue obtained in a safe and ethical manner from large cohorts of living individuals can help advance understanding of the multiomic foundations of brain function.

4.
medRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163086

RESUMEN

A goal of medical research is to determine the molecular basis of human brain health and illness. One way to achieve this goal is through observational studies of gene expression in human brain tissue. Due to the unavailability of brain tissue from living people, most such studies are performed using tissue from postmortem brain donors. An assumption underlying this practice is that gene expression in the postmortem human brain is an accurate representation of gene expression in the living human brain. Here, this assumption - which, until now, had not been adequately tested - is tested by comparing human prefrontal cortex gene expression between 275 living samples and 243 postmortem samples. Expression levels differed significantly for nearly 80% of genes, and a systematic examination of alternative explanations for this observation determined that these differences are not a consequence of cell type composition, RNA quality, postmortem interval, age, medication, morbidity, symptom severity, tissue pathology, sample handling, batch effects, or computational methods utilized. Analyses integrating the data generated for this study with data from earlier landmark studies that used tissue from postmortem brain donors showed that postmortem brain gene expression signatures of neurological and mental illnesses, as well as of normal traits such as aging, may not be accurate representations of these gene expression signatures in the living brain. By using tissue from large cohorts living people, future observational studies of human brain biology have the potential to (1) determine the medical research questions that can be addressed using postmortem tissue as a proxy for living tissue and (2) expand the scope of medical research to include questions about the molecular basis of human brain health and illness that can only be addressed in living people (e.g., "What happens at the molecular level in the brain as a person experiences an emotion?").

5.
J Thorac Cardiovasc Surg ; 153(1): 128-130, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27726873

RESUMEN

The prospect of genetically reprogramming cardiac fibroblasts into induced cardiomyocytes by using cardio-differentiating transcription factors represents a significant advantage over previous strategies involving stem cell implantation or the delivery of angiogenic factors. Remarkably, intramyocardial administration of cardio-differentiating factors consistently results in 20% to 30% improvements in postinfarct ejection fraction and nearly a 50% reduction in myocardial fibrosis in murine models. Despite these encouraging observations, few breakthroughs have been made in the reprogramming of human cells, which have more rigorous epigenetic constraints and gene regulatory networks that oppose reprogramming. As a potential solution to this challenge, Cao and colleagues used a cocktail of 9 chemicals capable of reprogramming human fibroblasts into contractile cardiomyocyte-like cells, albeit at a low efficiency. This strategy would obviate the concerns with viral vectors and appears to partially overcome the epigenetic constraints in human cells. Nevertheless, significant challenges, including drug-drug interactions, low reprogramming efficiency, and lack of in vivo data must be overcome before future clinical application.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Técnicas de Reprogramación Celular , Reprogramación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Fenotipo
6.
Conf Proc IEEE Eng Med Biol Soc ; 2005: 7056-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17281900

RESUMEN

We investigated to what degree the detection rate of the P300 in single trial event-related potentials is affected by short-term and long-term habituation effects, and we present an algorithm to eliminate eye-movement artifacts. Data from 26 subjects were collected using a visual oddball paradigm. P300 components were detected using a threshold algorithm operating on the delta band (0-4 Hz). Using data from four subjects, collected over a 7 to 12 week period, it was observed that the P300 amplitude tended to decrease within a session, and also between successive sessions. However, this decrease did not affect the detection rate. The eye-movement removal algorithm was tested on simulated and actual data, and resulted in a significant increase in detection rate.

7.
IEEE Trans Biomed Eng ; 51(6): 975-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15188867

RESUMEN

A threshold detector for single-trial P300 detection has been evaluated. The detector operates on the 0-4 Hz band, isolated from the raw electroencephalogram using low-pass filtering, wavelet transforms, or the piecewise prony method (PPM). A detection rate around 70% was found, irregardless of stimulus type, interstimulus interval (ISI), probability of occurrence (Pr) of the target stimuli, intrasession and intersession effects, or filtering method. This suggests that P300-based brain-machine interfaces can use an ISI as short as 1 s and a Pr of 45%, to increase throughput.


Asunto(s)
Algoritmos , Diagnóstico por Computador/métodos , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300/fisiología , Adulto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...