Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parasitol Int ; 98: 102812, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37777053

RESUMEN

We examined the effects of light exposure on the theront excystment circadian rhythm in Cryptocaryon irritans using a newly invented apparatus, which enabled us to examine the excystment rhythms of theronts from tomonts with low labor. Using the apparatus, we examined the timings of theront excystment from tomonts exposed directly to light and from tomonts exposed to light-exposed seawater by counting the number of excysted theronts. We found that the theront excystment time changed only when tomonts were directly exposed to light, indicating that light reception is essential for circadian rhythm entrainment. When tomonts were exposed to light only once for 12 h, either on Day 1, Day 2, or Day 3 after leaving host and being encysted, the circadian rhythm was entrained according to the photoperiod given on tomonts. Tomonts exposed to a low light (1 lx) with 12L:12D photoperiod daily showed a circadian rhythm similar to that in tomonts exposed to an intense light (500 lx) under the same photoperiod. When tomonts were incubated at 22 °C, 25 °C, or 28 °C under the same photoperiod, almost the same circadian rhythm was developed, suggesting temperature has little effect on the circadian rhythm entrainment between the range, even though the date of excystment was delayed in lower temperatures. These results suggest the circadian rhythm of theront excystment can be entrained in tomonts on the seabed of inner bays where net-cage aquaculture is conducted, and be involved in the outbreaks of cryptocaryoniasis there.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Animales , Ritmo Circadiano , Temperatura
2.
J Fish Dis ; 46(11): 1311-1319, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37579018

RESUMEN

Cryptocaryoniasis (marine white spot disease), caused by Cryptocaryon irritans, is a major threat to marine fish cultures in tropical and subtropical waters, and a serious nuisance to hobbyists with saltwater fish tanks. With only classical treatment schedules such as copper salts or hyposaline baths being available, control of the disease remains a challenge. In this study, we investigated the effect of Biokos, a viscosin-like lipopeptide surfactant extracted from a bacterium of the Pseudomonas genus, on the external life stages of C. irritans, including theronts, protomonts and tomonts. The present study demonstrated that the compound has an antiparasitic effect on all tested external stages of the parasite. In particular, when Biokos was used at 48 mg/L, it was able to kill almost all theronts and protomonts within 1 h in in vitro experiments, and using the same concentration in an in vivo challenge experiment, the parasitic load was reduced by more than 95% compared to the control group with no Biokos. Additionally, cultured fish cells were able to proliferate, and fish showed no adverse signs at Biokos concentrations that were effective in killing the parasite. Thus, Biokos may be a promising way for preventing or reducing the burden of this parasitic disease in the future.

3.
Mol Biotechnol ; 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37480447

RESUMEN

Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".

4.
Parasitol Int ; 80: 102228, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33147496

RESUMEN

In this study, Anisakis nematodes isolated from toothed and baleen whales from localities around Japan were molecularly (PCR-RFLP) identified. In Wakayama, common bottlenose dolphins (Tursiops truncatus) were infected with A. simplex sensu stricto (s.s.), A. typica and A. pegreffii, while A. typica was the only species found in pantropical spotted dolphin (Stenella attenuata) and striped dolphin (S. coeruleoalba). Offshore common minke whales (Balaenoptera acutorostrata) and sei whales (B. borealis) were almost exclusively infected with A. simplex s.s.. However, in common minke whales from two Hokkaido localities, mature worms mostly consisted of A. simplex s.s. in some individuals and of A. pegreffii in others, but immature worms were mainly A. simplex s.s.. Gross and histopathological examination on gastric mucosa attached by anisakids resulted in mild and superficial reactions by the two baleen whale species in contrast to severe inflammatory reaction associated with ulcer formations by common bottlenose dolphin. Host specificity and adaptability of Anisakis spp. in these baleen and toothed whales were discussed from the points of view of adult worm size, worm population and pathological reactions by hosts. Interestingly, most of the common minke whales predominantly harboring mature A. pegreffii adults belonged to the Yellow Sea - East China Sea stock (J stock), which migrates through the Sea of Japan, whereas most of those mainly parasitized by mature A. simplex s.s. adults were from the Okhotsk Sea - West Pacific stock (O stock), mostly inhabiting the Pacific side, suggesting that these sibling species may have utility as biological tags to differentiate whale stocks. These results represent the first definitive host records for A. pegreffi in the Northwestern Pacific Ocean.


Asunto(s)
Migración Animal , Anisakiasis/veterinaria , Anisakis/genética , Conservación de los Recursos Naturales , Ballenas , Animales , Anisakiasis/epidemiología , Anisakiasis/parasitología , Anisakis/clasificación , Femenino , Marcadores Genéticos , Japón/epidemiología , Masculino , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción , Dinámica Poblacional , Prevalencia
5.
Parasitol Int ; 78: 102137, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32439483

RESUMEN

The nematodes of the genus Anisakis are among the most relevant parasitic hazards in fishery products since they are responsible for human infection and allergy cases. In a food safety and epidemiological perspective, several marine hosts from different locations around Japan were examined to characterize the parasitism of Anisakis larvae. Chum salmon (Oncorhynchus keta) and Alaska pollock (Gadus chalcogrammus) showed the highest overall prevalence (100%), followed by blue mackerel (Scomber australasicus) (97.5%), Pacific cod (Gadus macrocephalus) (80%), chub mackerel (Scomber japonicus) (60.1%), Japanese flying squid (Todarodes pacificus) (17%) and Japanese pilchard (Sardinops sagax melanostictus) (2%). In Pacific krill (Euphausia pacifica), apart from one Hysterothylacium aduncum larva, no Anisakis specimens were detected. Anisakis simplex sensu stricto was molecularly identified (PCR-RFLP) for the first time in Japanese flying squid and Japanese pilchard distributed in the Northwestern Pacific ocean. That was the most frequent parasitic species detected followed by A. pegreffii, mostly in the western areas of Japan, hybrid genotypes between the two sibling species as well as A. typica and A. berlandi. Surprisingly, A. simplex s.s. was the most abundant species in one batch of chub mackerel from the East China Sea and A. pegreffii was the main species found in one batch from the Pacific coast of Aomori, which seems to indicate that the ranges of these two sibling species might be more variable than previously thought.


Asunto(s)
Anisakiasis/epidemiología , Anisakiasis/veterinaria , Anisakis/aislamiento & purificación , Enfermedades de los Peces/epidemiología , Peces , Parasitología de Alimentos/estadística & datos numéricos , Animales , Anisakiasis/parasitología , Anisakis/crecimiento & desarrollo , Enfermedades de los Peces/parasitología , Humanos , Japón/epidemiología , Larva/crecimiento & desarrollo , Prevalencia , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA