Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 23(25): 31991-2005, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26698990

RESUMEN

We present experiments dealing with a femtosecond laser-driven cluster-based plasma, where by analyzing the nonlinear phenomenon of satellites of spectral lines of Ar XVII, we revealed the nonlinear phenomenon of the generation of the second harmonic of the laser frequency. For performing this analysis we developed new results in the theory of satellites of spectral lines. From such lineshape analysis we found, in particular, that the efficiency of converting the short (40 fs) intense (3x10¹8 W/cm²) incident laser light into the second harmonic was 2%. This result is in the excellent agreement with the 2-Dimensional Particle-In-Cell (2D PIC) simulation that we also performed. There is also an order of magnitude agreement between the thresholds for the SHG found from the line shape analysis and from the 2D PIC simulations.

2.
Appl Opt ; 48(32): 6271-6, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19904327

RESUMEN

We demonstrate in-line phase-contrast imaging of nanothickness foils by using a relatively large, polychromatic, debris-free femtosecond-laser-driven cluster-based plasma soft x-ray source, and a high-resolution, large dynamic range LiF crystal detector. The spatial coherence length of radiation in our setup reached a value of 5 microm on the sample plane, which is enough to observe phase-contrast enhancement in the images registered by the detector placed only a few hundred micrometers behind the object. We have developed a tabletop soft x-ray emission source, which emits radiation within a 4pi sr solid angle, and which allows one to obtain contact and propagation-based phase-contrast imaging of nanostructures with 700 nm spatial resolutions. This advance could be of utility for metrology applications.

3.
Rev Sci Instrum ; 78(3): 036102, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17411227

RESUMEN

For multiple laser pulse experiments, it is necessary to split a laser pulse. In order to split a short laser pulse without stretching the pulse width, the laser pulse should not pass through thick materials. For this reason, a pellicle beam splitter (BS) and/or a mirror with a hole are required as a BS for the short laser pulse. The focusing qualities of the laser pulse after passing through the pellicle BS and the mirror with a hole are the same as without the BS's. The laser pulse quality reflected by the BSs should be considered for the laser pulse. A pellicle BS is a thin foil, so, it is weak against vibrations. One should be careful about airflows and isolation from vibration sources. The spot size of the reflected laser pulse is consistent with the size reflected by a normal mirror. The energy loss is about 10% compared with a normal mirror. A mirror with a hole is strong against external vibrations. The reflected laser pulse has a doughnut shape. The reflected laser pulse is interfered due to the shape. In order to cleanly focus the laser pulse, the inside size of the doughnut should be smaller than a half size of the outside portion of the doughnut.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 2): 036407, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16605668

RESUMEN

We use a one-shot measurement technique to study effects of laser prepulses on the electron laser wakefield acceleration driven by relativistically intense laser pulses (lambda=790 nm, 11 TW, 37 fs) in dense helium gas jets. A quasimonoenergetic electron bunch with an energy peak approximately 11.5 MeV[DeltaE/E approximately 10% (FWHM)] and with a narrow-cone angle (0.04pi mm mrad) of ejection is detected at a plasma density of 8 x 10(19) cm(-3). A strong correlation between the generation of monoenergetic electrons and optical guiding of the pulse in a thin channel produced by picosecond laser prepulses is observed. This generation mechanism is well corroborated by two-dimensional particle-in-cell simulations.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 2): 036407, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12689171

RESUMEN

Spatial and energy distributions of energetic electrons produced by an ultrashort, intense laser pulse with a short focal length optical system (Ti:sapphire, 12 TW, 50 fs, lambda=790 nm, f/3.5) in a He gas jet are measured. They are shown to depend strongly on the contrast ratio and shape of the laser prepulse. The wave breaking of the plasma waves at the front of the shock wave formed by a proper laser prepulse is found to make a narrow-cone (0.1pi mm mrad) electron injection. These electrons are further accelerated by the plasma wake field generated by the laser pulse up to tens of MeV forming a Maxwell-like energy distribution. In the case of nonmonotonic prepulse, hydrodynamic instability at the shock front leads to a broader, spotted spatial distribution. The numerical analysis based on a two-dimensional (2D) hydrodynamic (for the laser prepulse) and 2D particle-in-cell (PIC) simulation justifies the mechanism of electron acceleration. The PIC calculation predicts that electrons with energy from 10 to 40 MeV form a bunch with a pulse duration of about 40 fs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...