Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-11, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190254

RESUMEN

The uptake of sodium selenite (Se(IV)) and sodium selenate (Se(VI)) from aqueous medium by Lemna minor L. and the influence of different Se concentrations on its growth, morphological and ultrastructural characteristics were studied. L. minor was grown at different concentrations (1, 3, 5 and 10 mg L-1) of Se(IV) and Se(IV). The Se(IV) concentration in the plant tissue ranged between 77.7 (± 4.3) to 453 (± 0) mg kg-1 DW. The Se(VI) concentration in plant tissues ranged between 117 (± 11) to 417 (± 2) mg kg-1 DW. The highest bioconcentration factor for Se(VI) was 127 (± 7) at 3 mg/L, with a Se removal efficiency of 44%. For Se(IV), the highest bioconcentration factor was 77.7 (± 4.3) at 1 mg L-1, which had a Se removal efficiency of 23%. Growth of L. minor was suppressed at 10 mg L-1 Se in both forms. The addition of Se promoted the formation of starch granules in L. minor which occupied a chloroplast area of 74% for Se(IV) and 77% for Se(VI). The efficient uptake of both Se forms by L. minor indicates the potential application of this species for phytoremediation of Se laden wastewaters and its use as an alternative feedstock in biofuel production.

2.
J Hazard Mater ; 459: 132134, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37544177

RESUMEN

The use of phytoremediation as a method for wastewater treatment or removal of pollutants is garnering significant interest and duckweed (DW), a free floating macrophyte, depicts significant potential for the removal of nutrients and toxic compounds from contaminated waters. The present work aimed to develop an integrated process for remediating selenate (Se(VI)) using DW biomass and subsequent use of Se(VI) enriched DW for biogas production. The main objective is to extend the application of selenium (Se) enriched DW biomass for biogas production. Se(VI) enriched DW biomass (Se-DW) gave higher methane production (48.38 ± 3.6 mL gCOD-1) than control DW biomass (C-DW) (24.46 ± 3.6 mL gCOD-1). To further enhance methane production, three pre-treatment approaches (acid, alkali and hydrothermal) were assessed and the solid and liquid fractions obtained after pre-treatment were used as a substrate. Pre-treatments increased biogas production in both Se-DW and C-DW than untreated conditions. Liquid fractions gave higher biogas production than solid fractions. In Se-DW, highest biogas production was observed in hydrothermal pre-treated Se-DW, while in C-DW, acid pre-treatment gave higher biogas production. Methane production was shown to be enhanced up to a Se(VI) concentration of 1.7 mg L-1, whereas a concentration beyond this lowered biogas production.


Asunto(s)
Araceae , Selenio , Ácido Selénico , Biocombustibles , Metano , Anaerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...